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Powertrain Blockset Product Description
Model and simulate automotive powertrain systems

Powertrain Blockset provides fully assembled reference application models of automotive
powertrains, including gasoline, diesel, hybrid, and electric systems. It includes a component library
for simulating engine subsystems, transmission assemblies, traction motors, battery packs, and
controller models. Powertrain Blockset also includes a dynamometer model for virtual testing. MDF
file support provides a standards-based interface to calibration tools for data import.

Powertrain Blockset provides a standard model architecture that can be reused throughout the
development process. You can use it for design tradeoff analysis and component sizing, control
parameter optimization, and hardware-in-the-loop testing. You can customize models by
parameterizing components in a reference application with your own data or by replacing a
subsystem with your own model.

Key Features
• Fully assembled models for gasoline, diesel, hybrid, and electric powertrains
• Libraries of engine, transmission, traction motor, and battery components
• Basic controllers for powertrain subsystems
• Standard drive cycle data, including FTP75, NEDC, and JC08
• Engine dynamometer model for virtual calibration and testing
• MDF file support for calibration data import
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Required and Recommended Products

Required Products
Powertrain Blockset product requires current versions of these products:

• MATLAB
• Simulink

Recommended Products
You can extend the capabilities of the Powertrain Blockset using the following recommended
products.

Goal Recommended Product
Model events Stateflow®

Use physical modeling blocks Simscape and Simscape™ add-ons
Optimize powertrain performance and
control parameters

Optimization Toolbox™

Generate reports MATLAB® Report Generator™

Simulink® Report Generator
Optimize powertrain design Simulink Design Optimization™
Parallel computing MATLAB Parallel Server™

Parallel Computing Toolbox™
Calibrate engine models Model-Based Calibration Toolbox™

 Required and Recommended Products
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Getting Started with Powertrain Blockset
The Powertrain Blockset provides reference application projects assembled from blocks and
subsystems. Use the reference applications as a starting point to create your own powertrain models.

Objective For See
Design tradeoff analysis and
component sizing, control
parameter optimization, or
hardware-in-the-loop (HIL)
testing.

Full conventional vehicle with
spark-ignition (SI) or
combustion-ignition (CI)

“Explore the Conventional
Vehicle Reference Application”
on page 3-4

Hybrid electric vehicle (HEV) —
Multimode

“Explore the Hybrid Electric
Vehicle Multimode Reference
Application” on page 3-18

HEV — Input power-split “Explore the Hybrid Electric
Vehicle Input Power-Split
Reference Application” on page
3-36

Full electric vehicle “Explore the Electric Vehicle
Reference Application” on page
3-25

Engine and controller
calibration, validation, and
optimization before integration
with the vehicle model.

CI engine plant and controller “Explore the CI Engine
Dynamometer Reference
Application” on page 3-10

SI engine plant and controller “Explore the SI Engine
Dynamometer Reference
Application” on page 3-14

This example shows how to run the conventional vehicle reference application and examine the final
drive gear ratio impact on fuel economy and tailpipe emissions.

Running this example requires a Stateflow license. You can install a Stateflow trial license using the
Add-On Explorer.

1 Open the conventional vehicle reference application project. By default, the application has a
1.5–L spark-ignition (SI) engine and a final drive gear ratio of 3.

autoblkConVehStart 

Project files open in a writable location.
2 Enable data logging for the fuel economy and tailpipe emissions signals.

a In the Visualization subsystem, select the FuelEconomy signal line and Enable Data
Logging.
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b In the Visualization subsystem, enable data logging on the tailpipe emissions signals.

c Save the SiCiPtReferenceApplication model.
3 Parameterize the final drive gear ratio.

a In the Passenger Car subsystem, navigate to the DrivetrainConVeh > Differential
and Compliance > Front Wheel Drive subsystem. Open the Open Differential block.

 Getting Started with Powertrain Blockset

1-5



b In the Open Differential block mask:

• Change the Carrier to driveshaft ratio, Ndiff parameter to the variable diffratio.
The Carrier to driveshaft ratio, Ndiff parameter represents the final drive gear ratio.

• Use the available actions to create new data.

• Use the Create New Data dialog box to create a Model Workspace parameter diffratio
equal to a value of 3.

• In the Open Differential block mask, apply the change.
c In the Model Explorer, for the DrivetrainConVeh model, confirm that the diffratio

parameter is set to 3.

1 Getting Started

1-6



d Save the DrivetrainConVeh and SiCiPtReferenceApplication models.
4 Run a baseline conventional vehicle simulation with a final drive gear ratio of 3. Import the

results to the Simulation Data Inspector.

a In the SiCiPtReferenceApplication model, run the simulation for the default run time.
The simulation can take time to run. View progress in the Simulink window.

b
On the Simulink Editor toolbar, click the Data Inspector button  to open the Simulation
Data Inspector.

i In the Simulation Data Inspector, select Import. In the Import dialog box, accept the
defaults and select Import.

ii In the results field for the run, right-click to rename the run diffratio=3.

5 Run a conventional vehicle simulation with a final drive gear ratio of 2.5. Import the results to
the Simulation Data Inspector.

a In the Model Explorer, for the DrivetrainConVeh model, set the Model Workspace
diffratio parameter to 2.5.

b Save the DrivetrainConVeh model.
c In the SiCiPtReferenceApplication model, run the simulation for the default run time.
d To import the results, on the toolbar, select the Simulation Data Inspector.
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i In the Simulation Data Inspector, select Import. In the Import dialog box, accept the
defaults and select Import.

ii In the Simulation Data Inspector, in the results field for the run, right-click to rename
the run diffratio=2.5.

6 Use the Simulation Data Inspector to explore the results. To assess the impact of the final drive
gear ratio on the fuel economy and tailpipe emissions, view the plots of the simulation results.
For example, these simulation results indicate a better powertrain match when the final drive
gear ratio is 2.5:

• Fuel economy increases when the final drive gear ratio changes from 3 to 2.5.
• Tailpipe emissions (HC, NOx, CO2) decrease when the final drive gear ratio changes from 3 to

2.5.
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Next Steps
Assess the impact of the final drive gear ratio on vehicle performance. Although the fuel economy and
tailpipe emissions indicate a better powertrain match when the final drive gear ratio is 2.5, the ratio
also impacts performance.

To assess the vehicle performance, examine 0 to 100 km/hr acceleration times for each axle setting.
You can use the Drive Cycle Source block to output a constant velocity of (100/3.6) m/s.

See Also

Related Examples
• “Conventional Vehicle Spark-Ignition Engine Fuel Economy and Emissions” on page 1-10
• “Conventional Vehicle Powertrain Efficiency” on page 1-15

More About
• “Explore the Conventional Vehicle Reference Application” on page 3-4
• Simulation Data Inspector
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Conventional Vehicle Spark-Ignition Engine Fuel Economy and
Emissions

This example shows how to calculate the city and highway fuel economy and the emissions for a
conventional vehicle with a 1.5-L spark-ignition (SI) engine. To run this example, make sure you have
the city (FTP75) and the highway (HWFET) drive cycles installed. After you open the conventional
vehicle reference application, open the Drive Cycle Source block and click Install additional drive
cycles. For more information, see “Install Drive Cycle Data” on page 5-2.

setupconvehMPG;

Prepare the Conventional Vehicle Reference Application For Simulation

Name the Drive Cycle Source block and Visualization subsystem.

model = 'SiCiPtReferenceApplication';
dcs = [model, '/Drive Cycle Source'];
vis_sys = [model, '/Visualization'];

In the Visualization subsystem, log the emissions signal data.

pt_set_logging([vis_sys, '/Performance Calculations'], 'US MPG', 'Fuel Economy [mpg]', 'both');
pt_set_logging([vis_sys, '/Emission Calculations'], 'TP HC Mass (g/mi)', 'HC [g/mi]', 'both');
pt_set_logging([vis_sys, '/Emission Calculations'], 'TP CO Mass (g/mi)', 'CO [g/mi]', 'both');
pt_set_logging([vis_sys, '/Emission Calculations'], 'TP NOx Mass (g/mi)', 'NOx [g/mi]', 'both');
pt_set_logging([vis_sys, '/Emission Calculations'], 'TP CO2 Mass (g/km)', 'CO2 [g/km]', 'both');

Run City Drive Cycle Simulation

Configure the Drive Cycle Source block to run the city drive cycle (FTP75).

set_param(dcs,'cycleVar','FTP75');

Run a simulation of the city drive cycle. View the results in the Performance and FE Scope.

tfinal = get_param(dcs, 'tfinal');
tf = tfinal(1:strfind(tfinal,' '));
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simout1 = sim(model,'ReturnWorkspaceOutputs','on', 'StopTime', tf);
open_system('SiCiPtReferenceApplication/Visualization/Performance and FE Scope')

### Starting serial model reference simulation build
### Successfully updated the model reference simulation target for: DrivetrainConVeh
### Successfully updated the model reference simulation target for: PowertrainMaxPowerController
### Successfully updated the model reference simulation target for: SiEngineController
### Successfully updated the model reference simulation target for: SiMappedEngine

Build Summary

Simulation targets built:

Model                         Action                       Rebuild Reason                                           
====================================================================================================================
DrivetrainConVeh              Code generated and compiled  DrivetrainConVeh_msf.mexw64 does not exist.              
PowertrainMaxPowerController  Code generated and compiled  PowertrainMaxPowerController_msf.mexw64 does not exist.  
SiEngineController            Code generated and compiled  SiEngineController_msf.mexw64 does not exist.            
SiMappedEngine                Code generated and compiled  SiMappedEngine_msf.mexw64 does not exist.                

4 of 4 models built (0 models already up to date)
Build duration: 0h 3m 47.506s
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The results indicate that the fuel economy is approximately 30 mpg at the end of the drive cycle. The
scope also provides the target velocity, engine speed, and brake specific fuel consumption (BSFC).

Run Highway Drive Cycle Simulation

Configure the Drive Cycle Source block to run the highway drive cycle (HWFET). Make sure that you
have installed the highway drive cycle.

set_param(dcs,'cycleVar','HWFET');

Run a simulation of the highway drive cycle. View the results in the Performance and FE Scope.

tfinal = get_param(dcs, 'tfinal');
tf = tfinal(1:strfind(tfinal,' '));
simout2 = sim(model,'ReturnWorkspaceOutputs','on', 'StopTime', tf);
open_system('SiCiPtReferenceApplication/Visualization/Performance and FE Scope')

### Starting serial model reference simulation build
### Model reference simulation target for DrivetrainConVeh is up to date.
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### Model reference simulation target for PowertrainMaxPowerController is up to date.
### Model reference simulation target for SiEngineController is up to date.
### Model reference simulation target for SiMappedEngine is up to date.

Build Summary

0 of 4 models built (4 models already up to date)
Build duration: 0h 0m 1.383s

The results indicate that the fuel economy is approximately 34 mpg at the end of the drive cycle. The
scope also provides the target velocity, engine speed, and brake specific fuel consumption (BSFC).

Extract Results

Extract the city and highway fuel economy results for the city and highway drive cycles from the
logged data.
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logsout1 = simout1.get('logsout');
FE_urban = logsout1.get('Fuel Economy [mpg]').Values.Data(end);
logsout2 = simout2.get('logsout');
FE_hwy = logsout2.get('Fuel Economy [mpg]').Values.Data(end);

Use the city and highway fuel economy results to compute the combined sticker mpg.

FE_combined = 0.55*FE_urban + 0.45*FE_hwy;

Extract the tailpipe emissions from the city drive cycle.

HC = logsout1.get('HC [g/mi]').Values.Data(end);
CO = logsout1.get('CO [g/mi]').Values.Data(end);
NOx = logsout1.get('NOx [g/mi]').Values.Data(end);
CO2 = logsout1.get('CO2 [g/km]').Values.Data(end);

Display the fuel economy and city drive cycle tailpipe emissions results in the command window.

fprintf('\n***********************\n')
fprintf('FUEL ECONOMY\n');
fprintf('   City:     %4.2f mpg\n', FE_urban);
fprintf('   Highway:  %4.2f mpg\n', FE_hwy);
fprintf('   Combined: %4.2f mpg\n', FE_combined);
fprintf('\nTAILPIPE EMISSIONS\n');
fprintf('   HC:   %4.3f [g/mi]\n',HC);
fprintf('   CO:   %4.3f [g/mi]\n',CO);
fprintf('   NOx:  %4.3f [g/mi]\n',NOx);
fprintf('   CO2:  %4.1f [g/km]\n',CO2);
fprintf('   NMOG: %4.3f [g/mi]',HC+NOx);
fprintf('\n***********************\n');

***********************
FUEL ECONOMY
   City:     30.51 mpg
   Highway:  36.63 mpg
   Combined: 33.26 mpg

TAILPIPE EMISSIONS
   HC:   0.001 [g/mi]
   CO:   0.000 [g/mi]
   NOx:  0.002 [g/mi]
   CO2:  178.0 [g/km]
   NMOG: 0.003 [g/mi]
***********************

See Also
Drive Cycle Source

Related Examples
• “Install Drive Cycle Data” on page 5-2

More About
• “Explore the Conventional Vehicle Reference Application” on page 3-4
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Conventional Vehicle Powertrain Efficiency
The Powertrain Blockset vehicle reference applications include live scripts that you can run to
evaluate and report energy and power losses at the component- and subsystem-level. This example
shows how to examine the impact of the conventional vehicle transmission efficiency on the
powertrain efficiency.

Running this example requires a Stateflow license. You can install a Stateflow trial license using the
Add-On Explorer.

1 Open the conventional vehicle reference application project. By default, the application has a
mapped 1.5–L spark-ignition (SI) engine and a dual clutch transmission.

autoblkConVehStart 

Project files open in a writable location.
2 Double-click Analyze Power and Energy to open the live script. To generate the energy report,

select Run.

The live script provides:

• An overall energy summary and exported Excel® spreadsheet containing the data. For
example, this is similar to the Overall Summary report for the conventional vehicle. The
results indicate that the:

• Overall powertrain input energy is 47.5 MJ
• Dual clutch transmission average efficiency is 0.933

• Engine and drivetrain efficiencies, including an engine histogram of time spent at the
different engine efficiencies. For example, this is similar to the engine efficiency histogram for
the conventional vehicle.

 Conventional Vehicle Powertrain Efficiency
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• Drivetrain plant summary that provides the average efficiency, energy input, output, loss, and
stored. For example, this is similar to the Drivetrain Plant Summary for the conventional
vehicle. The results indicate that the drivetrain input energy is 10.1 MJ.

• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals. For example, these are similar to the power input and
loss plots for the conventional vehicle.
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3 In the Overall Summary section of the report:

a Select Dual Clutch Transmission to open the DCT Block subsystem.
b Select the Dual Clutch Transmission block.
c In the block mask, open the Transmission parameters.
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4 Change the dual clutch transmission so that it is less efficient. By default, the Dual Clutch
Transmission block Efficiency vector, eta parameter value is [0.930, 0.930, 0.930,
0.940,0.947, 0.948,0.946, 0.943,0.940, 0.935].

a Set the Efficiency vector, eta parameter to .9*[0.930, 0.930, 0.930,
0.940,0.947, 0.948,0.946, 0.943,0.940, 0.935].

b Save the DrivetrainConVeh model.
5 In the SiCIPtReferenceApplication model window, click Analyze Power and Energy to open the

live script. To generate the energy report, select Run.
6 After you run the live script, in the Overall Summary, examine the efficiencies. For example,

these results indicate that the:

• Overall powertrain input energy is 50.6 MJ
• Dual clutch transmission efficiency is 0.85

When the dual clutch transmission is less efficient, the powertrain requires more energy to
complete the drive cycle.
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See Also
autoblks.pwr.PlantInfo

Related Examples
• “Getting Started with Powertrain Blockset” on page 1-4
• “Conventional Vehicle Spark-Ignition Engine Fuel Economy and Emissions” on page 1-10

More About
• “Analyze Power and Energy” on page 3-117
• “Explore the Conventional Vehicle Reference Application” on page 3-4
• Simulation Data Inspector
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Workflows

• “SI Core Engine Air Mass Flow and Torque Production” on page 2-2
• “SI Engine Dual-Independent Cam Phaser Air Mass Flow Model” on page 2-5
• “SI Engine Speed-Density Air Mass Flow Model” on page 2-11
• “SI Engine Torque Structure Model” on page 2-14
• “SI Engine Simple Torque Model” on page 2-20
• “CI Core Engine Air Mass Flow and Torque Production” on page 2-21
• “CI Engine Speed-Density Air Mass Flow Model” on page 2-22
• “CI Engine Torque Structure Model” on page 2-25
• “CI Engine Simple Torque Model” on page 2-30
• “Engine Calibration Maps” on page 2-31
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SI Core Engine Air Mass Flow and Torque Production
A spark-ignition (SI) engine produces torque by controlling the net airflow into the engine using
throttle, turbocharger wastegate, and cam-phasing actuators.

While producing torque, the engine must comply with emission standards. To meet the tailpipe
emission standards, the ECU operates a three-way-catalyst (TWC) at the stoichiometric air-fuel ratio
(AFR).

In addition to emission controls, the ECU:

• Maximizes torque at middle speeds and high loads by operating rich of stoichiometry.
• Limits piston crown temperature at high speeds and high loads by running rich of stoichiometry.

Air Mass Flow Models
To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

Air Mass Flow Model Description
“SI Engine Speed-Density Air Mass
Flow Model” on page 2-11

Uses the speed-density equation to calculate the engine air
mass flow, relating the engine air mass flow to the intake
manifold pressure and engine speed. Consider using this air
mass flow model in engines with fixed valvetrain designs.

2 Workflows
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Air Mass Flow Model Description
“SI Engine Dual-Independent Cam
Phaser Air Mass Flow Model” on page
2-5

To calculate the engine air mass flow, the dual-independent
cam phaser model uses:

• Empirical calibration parameters developed from engine
mapping measurements

• Desktop calibration parameters derived from engine
computer-aided design (CAD) data

In contrast to typical embedded air mass flow calculations
based on direct air mass flow measurement with an air
mass flow (MAF) sensor, this air mass flow model offers:

• Elimination of MAF sensors in dual cam-phased
valvetrain applications

• Reasonable accuracy with changes in altitude
• Semiphysical modeling approach
• Bounded behavior
• Suitable execution time for electronic control unit (ECU)

implementation
• Systematic development of a relatively small number of

calibration parameters

Torque Models
To calculate the brake torque, configure the SI engine to use either of these torque models.
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Brake Torque Model Description
“SI Engine Torque Structure Model” on
page 2-14

For the structured brake torque calculation, the SI engine
uses tables for the inner torque, friction torque, optimal
spark, spark efficiency, and lambda efficiency.

If you select Crank angle pressure and torque on the
block Torque tab, you can:

• Simulate advanced closed-loop engine controls in
desktop simulations and on HIL bench, based on
cylinder pressure recorded from a model or laboratory
test as a function of crank angle.

• Simulate driveline vibrations downstream of the engine
due to high-frequency crankshaft torsionals.

• Simulate engine misfires due to lean operation or spark
plug fouling by using the injector pulse width input.

• Simulate cylinder deactivation effect (closed intake and
exhaust valves, no injected fuel) on individual cylinder
pressures, mean-value airflow, mean-value torque, and
crank-angle-based torque.

• Simulate the fuel-cut effect on individual cylinder
pressure, mean-value torque, and crank-angle-based
torque.

“SI Engine Simple Torque Model” on
page 2-20

For the simple brake torque calculation, the SI engine block
uses a torque lookup table map that is a function of engine
speed and load.

See Also
SI Controller | SI Core Engine

More About
• “Engine Calibration Maps” on page 2-31
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SI Engine Dual-Independent Cam Phaser Air Mass Flow Model
To calculate intake air mass flow for an engine equipped with cam phasers, you can configure the
spark-ignition (SI) engine with a dual-independent cam phaser intake air mass flow model. As
illustrated, the spark-ignition (SI) engine intake air mass flow calculation consists of these steps:

• Collecting physical measurements
• Estimating the ideal trapped mass
• Correcting the trapped mass
• Calculating the intake air mass flow

The dual-independent cam phaser intake air mass flow model implements equations that use these
variables.

Mtrapped Estimated ideal trapped mass
TMcorr Trapped mass correction multiplier
TMf low Flow rate equivalent to corrected trapped mass at the current engine speed
ṁintkideal Engine intake air mass flow at arbitrary cam phaser angles

ṁintkideal Engine intake port mass flow at arbitrary cam phaser angles

ṁair Engine intake air mass flow final correction at steady-state cam phaser angles

ṁintk Engine intake port mass flow at steady-state cam phaser angles
yintk, air Engine intake manifold air mass fraction

 SI Engine Dual-Independent Cam Phaser Air Mass Flow Model
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MAPIVC Intake manifold pressure at IVC
MATIVC Intake manifold temperature at IVC
MNom Nominal engine cylinder intake air mass at standard temperature and pressure,

piston at bottom dead center (BDC) maximum volume
IAT Intake air temperature
N Engine speed
Ncyl Number of engine cylinders
VIVC Cylinder volume at IVC
Vd Displaced volume
Rair Ideal gas constant
PAmb Ambient pressure
Tstd Standard temperature
Pstd Standard pressure
ρnorm Normalized density
φICP Measured intake cam phaser angle
φECP Exhaust cam phaser angle
Lideal Engine load (normalized cylinder air mass) at arbitrary cam phaser angles,

uncorrected for final steady-state cam phaser angles
L Engine load (normalized cylinder air mass) at arbitrary cam phaser angles, corrected

for final steady-state cam phaser angles
Cps Crankshaft revolutions per power stroke
fVivc Cylinder volume at IVC table
fTMcorr Trapped mass correction table
fairideal Intake air mass flow table
faircorr Intake air mass flow correction table

Collect Physical Measurements
In the SI engine model, the dual-independent cam phaser intake air mass flow model requires these
physical measurements:

• Intake manifold temperature and pressure at intake valve closing (IVC) condition
• Intake cam phase angle
• Exhaust cam phase angle
• Engine speed
• Ambient pressure and temperature
• Intake air mass flow, from one or more of the following

• Tank air meter
• Wide range air-fuel sensor and fuel-flow meter

2 Workflows
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• Wide range air-fuel sensor and injector pulse-width

Estimate Ideal Trapped Mass
The dual-independent cam phaser intake air mass flow model uses the Ideal Gas Law to estimate the
ideal trapped mass at intake manifold conditions. The calculation assumes the cylinder pressure and
temperature at IVC equal the intake manifold pressure and temperature.

Mtrapped ≅
MAPIVCVIVC
RairMATIVC

For engines with variable intake cam phasing, the trapped volume at IVC varies.

The cylinder volume at intake valve close table (IVC), fVivc is a function of the intake cam phaser
angle

VIVC = fVivc(φICP)

where:

• VIVC is cylinder volume at IVC, in L.
• φICP is intake cam phaser angle, in crank advance degrees.

Correct Trapped Mass
The dual-independent cam phaser intake air mass flow model uses a correction factor to account for
the difference between the ideal trapped mass in the cylinder and the actual trapped mass. The
trapped mass correction factor is a lookup table that is a function of the normalized density and
engine speed.

ρnorm =
MAPIVCIAT

PAmbMATIVC

The trapped mass correction factor table, fTMcorr, is a function of the normalized density and engine
speed
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TMcorr = fTMcorr(ρnorm,   N)

where:

• TMcorr, is trapped mass correction multiplier, dimensionless.
• ρnorm is normalized density, dimensionless.
• N is engine speed, in rpm.

• Normalized density accounts for the throttle position independent of a given altitude.
• Engine speed accounts for the pulsation effects of the piston movement.
• Ambient pressure is measured by a sensor on the electronic control unit (ECU) or estimated using

an inverse throttle valve model.
• The ECU estimates or measures intake air temperature (IAT) upstream of the throttle.

Trapped mass flow is expressed as a flow rate in grams per second (g/s). The trapped mass flow is the
maximum gas mass flow through the engine when no residual gases remain in the cylinder at the end
of the exhaust stroke.

TMf low =
1000 g

kg NcylTMcorrMtrappedN
60s
min Cps

Calculate Air Mass Flow
To determine the engine intake air mass flow at arbitrary cam phase angles, the dual-independent
cam phaser air mass flow model uses a lookup table.

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and
trapped air mass flow

ṁintkideal = f intkideal(φECP, TMf low)

where:

• ṁintkideal is engine intake port mass flow at arbitrary cam phaser angles, in g/s.

2 Workflows
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• φECP is exhaust cam phaser angle, in degrees crank retard.
• TMf low is flow rate equivalent to corrected trapped mass at the current engine speed, in g/s.

• The exhaust cam phasing has a significant effect on the fraction of burned gas. During the exhaust
stroke, exhaust cam-phasing affects the exhaust valve position at exhaust valve closing (EVC)
relative to the piston position. A retarded (late) exhaust cam phase angle moves EVC past piston
top dead center (TDC), causing the exhaust gas to flow back from the manifold runner into the
cylinder. This pull-back triggers the reburn of crevice volume gasses, reducing nitric oxide and
nitrogen dioxide emissions (NOx) via charge temperature reduction and hydrocarbon (HC)
emissions. Exhaust temperature and back pressure affect exhaust gas back-flow and exhaust cam
phaser timing. Exhaust gas temperature and pressure correlate to trapped mass flow. Since at
least 80% of trapped mass flow is unburned air, air mass flow is highly correlated to trapped mass
flow.

• The unburned air mass flow determines the engine load and open-loop fuel control to achieve a
target air-fuel ratio (AFR).

• The lookup table allows arbitrary cam phaser position combinations that can occur during
transient engine operations when the phasers are moving from one target position to another.

The intake air mass flow correction lookup table, faircorr, is a function of ideal load and engine speed

ṁair = ṁintkidealfaircorr(Lideal, N)

where:

• Lideal is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected
for final steady-state cam phaser angles, dimensionless.

• N is engine speed, in rpm.
• ṁair is engine intake air mass flow final correction at steady-state cam phaser angles, in g/s.
• ṁintkideal is engine intake port mass flow at arbitrary cam phaser angles, in g/s.
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• To calculate the engine intake port mass flow, the engine model uses this equation.

ṁintk =
ṁair

yintk, air

• Ideal load is the normalized engine cylinder unburned intake air mass before the final correction.
To calculate ideal load, the model divides the unburned intake air mass by the nominal cylinder
intake air mass. The nominal cylinder intake air mass is the intake air mass (kg) in a cylinder at
piston bottom dead center (BDC) with air at standard temperature and pressure:

  MNom =
PstdVd

NcylRairTstd

Lideal =
60s
min Cpsṁintkidealyintk, air

1000g
kg NcylNMNom

• The final engine load is expressed by

L =
60s
min Cpsṁair

1000g
Kg NcylNMNom

See Also
SI Controller | SI Core Engine

More About
• “SI Core Engine Air Mass Flow and Torque Production” on page 2-2
• “SI Engine Speed-Density Air Mass Flow Model” on page 2-11
• “Engine Calibration Maps” on page 2-31
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SI Engine Speed-Density Air Mass Flow Model
To calculate the air mass flow in the spark-ignition (SI) engine, you can configure the Spark Ignition
Core Engine block to use a speed-density air mass flow model. The speed-density model uses the
speed-density equation to calculate the engine air mass flow. The equation relates the engine air mass
flow to the intake manifold gas pressure, intake manifold gas temperature, and engine speed.
Consider using this air mass flow model in simple conventional engine designs, where variable
valvetrain technologies are not in use.

To determine the air mass flow, the speed-density air mass flow model applies these speed-density
equations at the intake manifold gas pressure and gas temperature states.

ṁintk =
MAPVdN 1   min

60s
CpsRairMAT ηv

ṁair = yintk, airṁintk

The speed-density air mass flow model uses a volumetric efficiency lookup table to correct the ideal
air mass flow.

The engine volumetric efficiency lookup table, fηv, is a function of intake manifold absolute pressure
and engine speed

ηv = fηv(MAP, N)

where:

• ηv is engine volumetric efficiency, dimensionless.
• MAP is intake manifold absolute pressure, in KPa.
• N is engine speed, in rpm.
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To develop the volumetric efficiency table, use the measured air mass flow rate, intake manifold gas
pressure, intake manifold gas temperature, and engine speed from engine performance testing.

ηv =
CpsRairMAT

MAPVdN 1   min
60s

ṁair

The air mass flow model implements equations that use these variables.

MAP Cycle average intake manifold pressure
ṁintk Engine intake port mass flow

ṁair Engine intake air mass flow
Vd Displaced volume
N Engine speed
Cps Crankshaft revolutions per power stroke
MAT Cycle average intake manifold gas absolute temperature
Rair Ideal gas constant for air and burned gas mixture
fηv Engine volumetric efficiency lookup table

ηv Engine volumetric efficiency

References
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
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• “SI Engine Dual-Independent Cam Phaser Air Mass Flow Model” on page 2-5
• “Engine Calibration Maps” on page 2-31
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SI Engine Torque Structure Model
The spark-ignition (SI) engine implements a simplified version of the SI engine torque structure
calculation used in a Bosch Engine Management System (EMS). For the torque structure estimation
calculation, the block requires calibration tables for:

• Inner torque — Maximum torque potential of the engine at a given speed and load
• Friction torque — Torque losses due to friction
• Optimal spark — Spark advance for optimal inner torque
• Spark efficiency — Torque loss due to spark retard from optimal
• Lambda efficiency — Torque loss due to lambda change from optimal
• Pumping torque — Torque loss due to pumping

The tables available with Powertrain Blockset were developed with the Model-Based Calibration
Toolbox.

Lookup Table Used to Determine Plot
Inner torque, fTqinr Tqinr = fTqinr(L, N) The inner torque lookup table, fTqinr, is a function of

engine speed and engine load, Tqinr = fTqinr(L, N),
where:

• Tqinr is inner torque based on gross indicated
mean effective pressure, in N·m.

• L is engine load at arbitrary cam phaser angles,
corrected for final steady-state cam phaser angles,
dimensionless.

• N is engine speed, in rpm.
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Lookup Table Used to Determine Plot
Friction torque,
fTf ric

Tf ric = fTf ric L, N The friction torque lookup table, fTf ric, is a function
of engine speed and engine load, Tf ric = fTf ric L, N ,
where:

• Tf ric is friction torque offset to inner torque, in
N·m.

• L is engine load at arbitrary cam phaser angles,
corrected for final steady-state cam phaser angles,
dimensionless.

• N is engine speed, in rpm.

Pumping torque,
ƒTpump

Tpump=ƒTpump(L,N) The pumping work lookup table, ƒTpump, is a function
of engine load and engine speed, Tpump=ƒTpump(L,N),
where:

• Tpump is pumping work, in N·m.
• L is engine load, as a normalized cylinder air

mass, dimensionless.
• N is engine speed, in rpm.
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Lookup Table Used to Determine Plot
Optimal spark,
fSAopt

SAopt = fSAopt(L, N) The optimal spark lookup table, fSAopt, is a function
of engine speed and engine load, SAopt = fSAopt(L, N),
where:

• SAopt is optimal spark advance timing for
maximum inner torque at stoichiometric air-fuel
ratio (AFR), in deg.

• L is engine load at arbitrary cam phaser angles,
corrected for final steady-state cam phaser angles,
dimensionless.

• N is engine speed, in rpm.
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Lookup Table Used to Determine Plot
Spark efficiency,
fMsa

Msa = fMsa(ΔSA)
ΔSA = SAopt− SA

The spark efficiency lookup table, fMsa, is a function
of the spark retard from optimal

Msa = fMsa(ΔSA)
ΔSA = SAopt− SA

where:

• Msa is the spark retard efficiency multiplier,
dimensionless.

• ΔSAis the spark retard timing distance from
optimal spark advance, in deg.
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Lookup Table Used to Determine Plot
Lambda efficiency,
fMλ

Mλ = fMλ(λ) The lambda efficiency lookup table, fMλ, is a function
of lambda, Mλ = fMλ(λ), where:

• Mλ is the lambda multiplier on inner torque to
account for the air-fuel ratio (AFR) effect,
dimensionless.

• λ is lambda, AFR normalized to stoichiometric fuel
AFR, dimensionless.

The engine brake torque is a based on inner torque with lambda efficiency, spark retard efficiency
multipliers, pumping torque, and a friction torque offset

Tbrake = MλMsaTqinr − Tf ric− Tpump

To account for thermal effects, the torque structure model corrects the friction torque calculation as
a function of coolant temperature.

Tf ric = Mf ricfTf ric(L, N)
Mf ric = f f ric, temp(Tcoolant)

The pumping torque is a function of engine speed and engine speed.

Tpump = fTpump(L, N)

SAopt Optimal spark advance timing for maximum inner torque at stoichiometric air-fuel
ratio (AFR)

ΔSA Spark retard timing distance from optimal spark advance
SA Spark advance timing
L Engine load at arbitrary cam phaser angles, corrected for final steady-state cam

phaser angles
N Engine speed
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Mλ Lambda multiplier on inner torque to account for the AFR effect
λ Lambda, AFR normalized to stoichiometric fuel AFR
Msa Spark retard efficiency multiplier
fMsa Spark efficiency lookup table to account for torque loss due to spark retard from

optimal
fTf ric Friction torque lookup table to account for torque losses due to friction
fMλ Lambda efficiency lookup table to account for torque loss due to lambda change from

optimal
fSAopt Optimal spark lookup table, for maximum inner torque as a function of engine speed

and load
fTqinr Inner torque lookup table, for maximum torque potential of the engine at a given

speed and load
Tbrake Engine brake torque after accounting for spark advance, AFR, and friction effects
Tf ric Friction torque offset to inner torque
Tqinr Inner torque based on gross indicated mean effective pressure
Tpump Pumping torque
Mfric Friction torque modifier
Tcoolant Coolant temperature

References
[1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software

Structure for Engine Management Systems – BOSCH ME7. SAE Technical Paper 980801,
1998.
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More About
• “SI Core Engine Air Mass Flow and Torque Production” on page 2-2
• “SI Engine Simple Torque Model” on page 2-20
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SI Engine Simple Torque Model
For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of
engine speed and load, Tbrake = fTnL(L, N), where:

• Tbrake is engine brake torque after accounting for spark advance, AFR, and friction effects, in
N·m.

• L is engine load, as a normalized cylinder air mass, dimensionless.
• N is engine speed, in rpm.

See Also
SI Controller | SI Core Engine

More About
• “SI Core Engine Air Mass Flow and Torque Production” on page 2-2
• “SI Engine Torque Structure Model” on page 2-14
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CI Core Engine Air Mass Flow and Torque Production
A compression-ignition (CI) engine produces mechanical power by injecting fuel into the combustion
chamber near the end of the compression stroke. Since the combustion chamber pressure and
temperature exceeds the fuel ignition limit, spontaneous ignition occurs after injection. Heat released
during combustion increases the cylinder pressure. During the power stroke, the engine converts the
pressure to mechanical torque.

Torque production relates to injected fuel mass, fuel injection timing, fuel pressure, and air system
states. CI engines operate at lean air-fuel ratio (AFR) conditions, so the AFR is greater than the
stoichiometric AFR. CI engines use exhaust gas recirculation (EGR). The exhaust gases recirculate
back to the intake manifold, reducing engine-out nitric oxide and nitrogen dioxide (NOx) emissions.

Air Mass Flow
To calculate the air mass flow, the compression-ignition (CI) engine uses the “CI Engine Speed-
Density Air Mass Flow Model” on page 2-22. The speed-density model uses the speed-density
equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake
manifold pressure, intake manifold temperature, and engine speed.

Torque
To calculate the engine torque, you can configure the block to use either of these torque models.

Brake Torque Model Description
“CI Engine Torque Structure
Model” on page 2-25

The CI core engine torque structure model determines the engine
torque by reducing the maximum engine torque potential as these
engine conditions vary from nominal:

• Start of injection (SOI) timing
• Exhaust back-pressure
• Burned fuel mass
• Intake manifold gas pressure, temperature, and oxygen

percentage
• Fuel rail pressure

To account for the effect of post-inject fuel on torque, the model
uses a calibrated torque offset table.

“CI Engine Simple Torque
Model” on page 2-30

For the simple engine torque calculation, the CI engine uses a
torque lookup table map that is a function of engine speed and
injected fuel mass.

See Also
CI Core Engine | CI Controller

More About
• “Engine Calibration Maps” on page 2-31
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CI Engine Speed-Density Air Mass Flow Model
To calculate the air mass flow in the compression-ignition (CI) engine, the CI Core Engine block uses
a speed-density air mass flow model. The speed-density model uses the speed-density equation to
calculate the engine air mass flow. The equation relates the engine air mass flow to the intake
manifold gas pressure, intake manifold gas temperature, and engine speed. In the CI Core Engine
block, the air mass flow and the cylinder air mass determine the engine load.

To determine the air mass flow, the speed-density air mass flow model uses this speed-density
equation at the intake manifold and the volumetric efficiency. The model subtracts the exhaust gas
recirculation (EGR) burned gas from the mass flow at the intake port.

ṁport =
MAPVdN 1   min

60s
CpsRairMAT ηv

ṁair = ṁport− ṁegr

The speed-density air mass flow model uses a volumetric efficiency lookup table to determine the
volumetric efficiency.

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake
valve closing (IVC) and engine speed

ηv = fηv(MAP, N)

where:

• ηv is engine volumetric efficiency, dimensionless.
• MAP is intake manifold absolute pressure, in KPa.
• N is engine speed, in rpm.
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To create the volumetric efficiency table, use the air mass flow rate from measured engine
performance data and the speed-density equation.

ηv =
CpsRairMAT

MAPVdN 1   min
60s

ṁair

To calculate the engine load, the block divides the calculated unburned air mass by the nominal
cylinder air mass. The nominal cylinder air mass is the mass of air (in kg) in a cylinder with the piston
at bottom dead center (BDC), at standard air temperature and pressure.

MNom =
PstdVd

NcylRairTstd

L =
60s
min Cpsṁair

1000g
kg NcylNMNom

The model implements equations that use these variables.

ṁair Engine air mass flow
MAP Cycle average intake manifold pressure
ṁport Total engine air mass flow at intake ports, including EGR flow

ṁegr Recirculated burned gas mass flow entering engine intake port
Vd Displaced volume
N Engine speed
Cps Crankshaft revolutions per power stroke
Rair Ideal gas constant for air and burned gas mixture
MAT Cycle average intake manifold gas absolute temperature
ηv Engine volumetric efficiency
fηv Engine volumetric efficiency lookup table

L Engine load (normalized cylinder air mass) at arbitrary cam phaser angles, corrected
for final steady-state cam phaser angles
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MNom Nominal engine cylinder air mass at standard temperature and pressure; piston at
bottom dead center (BDC) maximum volume

Pstd Standard pressure
Tstd Standard temperature

References
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CI Engine Torque Structure Model
The CI core engine torque structure model determines the engine torque by reducing the maximum
engine torque potential as these engine conditions vary from nominal:

• Start of injection (SOI) timing
• Exhaust back-pressure
• Burned fuel mass
• Intake manifold gas pressure, temperature, and oxygen percentage
• Fuel rail pressure

To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.

To determine the engine torque, the CI core engine torque structure model implements the equations
specified in these steps.

Step Description
Step 1: Determine
nominal engine inputs
and states

Model uses lookup tables to determine these nominal engine inputs and
states as a function of compression stroke injected fuel mass, F, and
engine speed, N:

• Main start of injection timing, SOI = ƒSOIc(F,N)
• Intake manifold gas temperature, MAT = ƒMAT(F,N)
• Intake manifold gas pressure, MAP = ƒMAP(F,N)
• Intake manifold oxygen percentage, O2PCT = ƒO2(F,N)
• Fuel rail pressure, FUELP = ƒfuelp(F,N)

Step 2: Calculate relative
engine states

To determine these relative engine states, the model calculates deviations
from their nominal values.

• Main start of injection timing delta, ΔSOIc= ƒSOI(F,N)- SOI
• Intake manifold gas temperature delta, ΔMAT = ƒMAT(F,N) - MAT
• Intake manifold oxygen percentage delta, ΔO2PCT = ƒO2(F,N) - O2PCT
• Fuel rail pressure delta, ΔFUELP = ƒfuelp(F,N) - FUELP

For the intake manifold gas pressure, the block uses a pressure ratio to
determine the relative state. The pressure ratio is the intake manifold gas
pressure to the steady-state operating point gas pressure.

MAPratio = MAP
fMAP F, N
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Step Description
Step 3: Determine
efficiency multipliers

Model uses gross indicated mean effective pressure (IMEPG)[1] efficiency
multipliers to reduce the maximum average pressure potential of
combustion. The efficiency multipliers are lookup tables that are functions
of the relative engine states.

• Main start of injection timing efficiency multiplier, SOIeff =
ƒSOIeff(ΔSOI,N)

• Intake manifold gas temperature efficiency multiplier, MATeff =
ƒMATeff(ΔMAT,N)

• Intake manifold gas pressure efficiency multiplier, MAPeff =
ƒMAPeff(MAPratio,λ)

• Intake manifold oxygen percentage efficiency multiplier, O2Peff =
ƒO2Peff(ΔO2P,N)

• Fuel rail pressure efficiency multiplier, FUELPeff = ƒFUELPeff(ΔFUELP,N)
Step 4: Determine
indicated mean effective
cylinder pressure (IMEP)
available for torque
production

To determine the IMEP available for torque production, the model
implements these equations.

IMEP = SOIef fMAPef fMATef fO2pef fFUELPef f IMEPG

IMEPG = f IMEPg(F, N)

The model multiplies the efficiency multipliers from step 3 by the IMEPG.
The model implements IMEPG as lookup table that is a function of the of
compression stroke injected fuel mass, F, and engine speed, N.

Step 5: Account for
losses due to friction

To account for friction effects, the model uses the nominal friction mean
effective pressure (FMEP)[1] to implement this equation.

  FMEP = fFMEP(F, N)f fmod(Toil, N)

The model implements FMEP as lookup table that is a function of the of
compression stroke injected fuel mass, F, and engine speed, N. To account
for the temperature effect on friction, the model use a lookup table that is
a function of oil temperature, Toil, and N.

Step 6: Account for
pressure loss due to
pumping

To account for pressure losses due to pumping, the model uses the
nominal pumping mean effective pressure (PMEP)[1] to implement these
equations.

ΔMAP = fMAP F, N −MAP
ΔEMAP = fEMAP F, N − EMAP

PMEP = fPMEP F, N − ΔMAP + ΔEMAP

The model implements MAP and EMAP as lookup tables that are functions
of the of compression stroke injected fuel mass, F, and engine speed, N.
Under normal operating conditions, PMEP is negative, indicating a loss of
cylinder pressure.

2 Workflows

2-26



Step Description
Step 7: Account for late
fuel injection SOI timing
on IMEP

To account for late fuel injection SOI timing on IMEP, ΔIMEPpost, the
model uses a lookup table that is a function of the effective pressure post
inject SOI timing centroid, SOIpost, and the post inject mass sum, Fpost.

ΔIMEPpost = fΔIMEPpost SOIpost, Fpost

Step 8: Calculate engine
brake torque

To calculate the engine brake torque, Tbrake, the model converts the brake
mean effective pressure (BMEP)[1] to engine brake torque using these
equations. The BMEP calculation accounts for all gross mean effective
pressure losses. Vd is displaced cylinder volume. Cps is the number of
power strokes per revolution.

BMEP = IMEPG + ΔIMEPpost− FMEP + PMEP

Tbrake =
Vd

2πCpsBMEP

Fuel Injection
In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of
injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass
injection type identifier parameter.

Type of Injection Parameter Value
Pilot 0
Main 1
Post 2
Passed 3

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned
fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit
parameter to specify the threshold.

Percent Oxygen
The model uses this equation to calculate the oxygen percent, O2p. yin,air is the unburned air mass
fraction.

O2p = 23.13yin, air

Exhaust Temperature
The exhaust temperature calculation depends on the torque model. For both torque models, the block
implements lookup tables.
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Torque
Model

Description Equations

Simple
Torque
Lookup

Exhaust temperature lookup table is
a function of the injected fuel mass
and engine speed.

Texh = fTexh(F, N)

Torque
Structure

The nominal exhaust temperature,
Texhnom, is a product of these exhaust
temperature efficiencies:

• SOI timing
• Intake manifold gas pressure
• Intake manifold gas temperature
• Intake manifold gas oxygen

percentage
• Fuel rail pressure
• Optimal temperature

The exhaust temperature, Texhnom, is
offset by a post temperature effect,
ΔTpost, that accounts for post and late
injections during the expansion and
exhaust strokes.

Texhnom = SOIexhtef fMAPexhtef fMATexhtef fO2pexhtef fFUELPexhtef fTexhopt
Texh = Texhnom + ΔTpost

SOIexhtef f = fSOIexhtef f ΔSOI, N

MAPexhtef f = fMAPexhtef f MAPratio, λ

MATexhtef f = fMATexhtef f ΔMAT, N

O2pexhtef f = fO2pexhtef f ΔO2p, N

Texhopt = fTexh(F, N)

The equations use these variables.

F Compression stroke injected fuel mass
N Engine speed
Texh Exhaust manifold gas temperature
Texhopt Optimal exhaust manifold gas temperature
ΔTpost Post injection temperature effect
Texhnom Nominal exhaust temperature
SOIexhteff Main SOI exhaust temperature efficiency multiplier
ΔSOI Main SOI timing relative to optimal timing
MAPexheff Intake manifold gas pressure exhaust temperature efficiency multiplier
MAPratio Intake manifold gas pressure ratio relative to optimal pressure ratio
λ Intake manifold gas lambda
MATexheff Intake manifold gas temperature exhaust temperature efficiency multiplier
ΔMAT Intake manifold gas temperature relative to optimal temperature
O2Pexheff Intake manifold gas oxygen exhaust temperature efficiency multiplier
ΔO2P Intake gas oxygen percent relative to optimal
FUELPexheff Fuel rail pressure exhaust temperature efficiency multiplier
ΔFUELP Fuel rail pressure relative to optimal
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CI Engine Simple Torque Model
For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine
speed and injected fuel mass, Tbrake = fTnf (F, N), where:

• Tq = Tbrake is engine brake torque after accounting for engine mechanical and pumping friction
effects, in N·m.

• F is injected fuel mass, in mg per injection.
• N is engine speed, in rpm.

See Also
CI Controller | CI Core Engine

More About
• “CI Core Engine Air Mass Flow and Torque Production” on page 2-21
• “CI Engine Torque Structure Model” on page 2-25
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Engine Calibration Maps
Calibration maps are a key part of the engine plant and controller models available in the Powertrain
Blockset. Engine models use the maps to represent engine behavior and to store optimal control
parameters. Using calibration maps in control design leads to flexible, efficient control algorithms
and estimators that are suitable for electronic control unit (ECU) implementation.

To develop the calibration maps for engine plant and controller models in the reference applications,
MathWorks® developed and used processes to measure performance data from 1.5–L spark-ignition
(SI) and compression-ignition (CI) engine models provided by Gamma Technologies LLC.

To represent the behavior of engine plants and controllers specific to your application, you can
develop your own engine calibration maps. The data required for calibration typically comes from
engine dynamometer tests or engine hardware design models.

Engine Plant Calibration Maps
The engine plant model calibration maps in the Powertrain Blockset SI and CI reference applications
affect the engine response to control inputs (for example, spark timing, throttle position, and cam
phasing).

To develop the calibration maps in the Powertrain Blockset engine plant models, MathWorks used GT-
POWER models from the GT-SUITE modeling library in a Simulink-based virtual dynamometer.
MathWorks used the Model-Based Calibration Toolbox to create design-of-experiment (DoE) test
plans. The Simulink-based virtual dynamometer executed the DoE test plan on GT-POWER 1.5–L SI
and CI reference engines. MathWorks used the Model-Based Calibration Toolbox to develop the
engine plant model calibration maps from the GT-POWER.

Engine Controller Calibration Maps
The engine controller model calibration maps in the reference applications represent the optimal
open-loop control commands for given engine operating points.

To develop the calibration maps for the SI engine controller, MathWorks used the GT-POWER
reference engine models in a virtual engine calibration optimization (VECO) process. The process
optimized the open-loop control commands for 1.5–L SI engine, subject to engine operating
constraints for knock, turbocharger speed, and exhaust temperature.

To develop the calibration maps for the CI engine controller, MathWorks used the DOE test data from
the GT-POWER 1.5–L CI reference model operated at minimum brake-specific fuel consumption
(BSFC).

Calibration Maps in Compression-Ignition (CI) Blocks
In the engine models, the Powertrain Blockset blocks implement these calibration maps.
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Map Used For In Description
Volumetric
efficiency

“CI Engine
Speed-Density
Air Mass Flow
Model” on page
2-22

CI Core
Engine

CI
Controller

The volumetric efficiency lookup table is a function of
the intake manifold absolute pressure at intake valve
closing (IVC) and engine speed

ηv = fηv(MAP, N)

where:

• ηv is engine volumetric efficiency, dimensionless.
• MAP is intake manifold absolute pressure, in KPa.
• N is engine speed, in rpm.

Optimal main
start of
injection
(SOI) timing

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The optimal main start of injection (SOI) timing lookup
table, ƒSOIc, is a function of the engine speed and
injected fuel mass, SOIc = ƒSOIc(F,N), where:

• SOIc is optimal SOI timing, in degATDC.
• F is compression stroke injected fuel mass, in mg

per injection.
• N is engine speed, in rpm.
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Map Used For In Description
Optimal
intake
manifold gas
pressure

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The optimal intake manifold gas pressure lookup table,
ƒMAP, is a function of the engine speed and injected fuel
mass, MAP = ƒMAP(F,N), where:

• MAP is optimal intake manifold gas pressure, in Pa.
• F is compression stroke injected fuel mass, in mg

per injection.
• N is engine speed, in rpm.

Optimal
exhaust
manifold gas
pressure

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The optimal exhaust manifold gas pressure lookup
table, ƒEMAP, is a function of the engine speed and
injected fuel mass, EMAP = ƒEMAP(F,N), where:

• EMAP is optimal exhaust manifold gas pressure, in
Pa.

• F is compression stroke injected fuel mass, in mg
per injection.

• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used For In Description
Optimal
intake
manifold gas
temperature

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The optimal intake manifold gas temperature lookup
table, ƒMAT, is a function of the engine speed and
injected fuel mass, MAT = ƒMAT(F,N), where:

• MAT is optimal intake manifold gas temperature, in
K.

• F is compression stroke injected fuel mass, in mg
per injection.

• N is engine speed, in rpm.

Optimal
intake gas
oxygen
percent

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The optimal intake gas oxygen percent lookup table,
ƒO2, is a function of the engine speed and injected fuel
mass, O2PCT = ƒO2(F,N), where:

• O2PCT is optimal intake gas oxygen, in percent.
• F is compression stroke injected fuel mass, in mg

per injection.
• N is engine speed, in rpm.

2 Workflows
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Map Used For In Description
Optimal fuel
rail pressure

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The optimal fuel rail pressure lookup table, ƒfuelp, is a
function of the engine speed and injected fuel mass,
FUELP = ƒfuelp(F,N), where:

• FUELP is optimal fuel rail pressure, in MPa.
• F is compression stroke injected fuel mass, in mg

per injection.
• N is engine speed, in rpm.

Optimal gross
indicated
mean
effective
pressure

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The optimal gross indicated mean effective pressure
lookup table, ƒimepg, is a function of the engine speed
and injected fuel mass, IMEPG = ƒimepg(F,N), where:

• IMEPG is optimal gross indicated mean effective
pressure, in Pa.

• F is compression stroke injected fuel mass, in mg
per injection.

• N is engine speed, in rpm.

 Engine Calibration Maps

2-35



Map Used For In Description
Optimal
friction mean
effective
pressure

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The optimal friction mean effective pressure lookup
table, ƒfmep, is a function of the engine speed and
injected fuel mass, FMEP = ƒfmep(F,N), where:

• FMEP is optimal friction mean effective pressure,
in Pa.

• F is compression stroke injected fuel mass, in mg
per injection.

• N is engine speed, in rpm.

Optimal
pumping
mean
effective
pressure

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The optimal pumping mean effective pressure lookup
table, ƒpmep, is a function of the engine speed and
injected fuel mass, PMEP = ƒpmep(F,N), where:

• PMEP is optimal pumping mean effective pressure,
in Pa.

• F is compression stroke injected fuel mass, in mg
per injection.

• N is engine speed, in rpm.

2 Workflows
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Map Used For In Description
Main SOI
timing
efficiency
multiplier

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The main start of injection (SOI) timing efficiency
multiplier lookup table, ƒSOIeff, is a function of the
engine speed and main SOI timing relative to optimal
timing, SOIeff = ƒSOIeff(ΔSOI,N), where:

• SOIeff is main SOI timing efficiency multiplier,
dimensionless.

• ΔSOI is main SOI timing relative to optimal timing,
in degBTDC.

• N is engine speed, in rpm.

Intake
manifold gas
pressure
efficiency
multiplier

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The intake manifold gas pressure efficiency multiplier
lookup table, ƒMAPeff, is a function of the intake manifold
gas pressure ratio relative to optimal pressure ratio
and lambda, MAPeff = ƒMAPeff(MAPratio,λ), where:

• MAPeff is intake manifold gas pressure efficiency
multiplier, dimensionless.

• MAPratio is intake manifold gas pressure ratio
relative to optimal pressure ratio, dimensionless.

• λ is intake manifold gas lambda, dimensionless.

 Engine Calibration Maps
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Map Used For In Description
Intake
manifold gas
temperature
efficiency
multiplier

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The intake manifold gas temperature efficiency
multiplier lookup table, ƒMATeff, is a function of the
engine speed and intake manifold gas temperature
relative to optimal temperature, MATeff =
ƒMATeff(ΔMAT,N), where:

• MATeff is intake manifold gas temperature
efficiency multiplier, dimensionless.

• ΔMAT is intake manifold gas temperature relative
to optimal temperature, in K.

• N is engine speed, in rpm.

Intake
manifold gas
oxygen
efficiency
multiplier

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The intake manifold gas oxygen efficiency multiplier
lookup table, ƒO2Peff, is a function of the engine speed
and intake manifold gas oxygen percent relative to
optimal, O2Peff = ƒO2Peff(ΔO2P,N), where:

• O2Peff is intake manifold gas oxygen efficiency
multiplier, dimensionless.

• ΔO2P is intake gas oxygen percent relative to
optimal, in percent.

• N is engine speed, in rpm.

2 Workflows
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Map Used For In Description
Indicated
mean
effective
pressure post
inject
correction

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The indicated mean effective pressure post inject
correction lookup table, ƒIMEPpost, is a function of the
engine speed and fuel rail pressure relative to optimal
breakpoints, ΔIMEPpost = ƒIMEPpost(ΔSOIpost,Fpost),
where:

• ΔIMEPpost is indicated mean effective pressure post
inject correction, in Pa.

• ΔSOIpost is indicated mean effective pressure post
inject start of inject timing centroid, in degATDC.

• Fpost is indicated mean effective pressure post inject
mass sum, in mg per injection.

Fuel rail
pressure
efficiency
multiplier

“CI Engine
Torque
Structure
Model” on page
2-25

CI Core
Engine

CI
Controller

The fuel rail pressure efficiency multiplier lookup
table, ƒFUELPeff, is a function of the engine speed and
fuel rail pressure relative to optimal breakpoints,
FUELPeff = ƒFUELPeff(ΔFUELP,N), where:

• FUELPeff is fuel rail pressure efficiency multiplier,
dimensionless.

• ΔFUELP is fuel rail pressure relative to optimal, in
MPa.

• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used For In Description
Engine brake
torque

“CI Engine
Simple Torque
Model” on page
2-30

CI Core
Engine

CI
Controller

For the simple torque lookup table model, the CI
engine uses a lookup table is a function of engine
speed and injected fuel mass, Tbrake = fTnf (F, N),
where:

• Tq = Tbrake is engine brake torque after accounting
for engine mechanical and pumping friction effects,
in N·m.

• F is injected fuel mass, in mg per injection.
• N is engine speed, in rpm.

2 Workflows
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Map Used For In Description
Hydrocarbon
(HC) mass
fraction

HC emissions CI Core
Engine

The CI Core Engine HC emission mass fraction lookup
table is a function of engine torque and engine speed,
HC Mass Fraction = ƒ(Speed, Torque), where:

• HC Mass Fraction is the HC emission mass
fraction, dimensionless.

• Speed is engine speed, in rpm.
• Torque is engine torque, in N·m.

 Engine Calibration Maps
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Map Used For In Description
Carbon
monoxide
(CO) mass
fraction

CO emissions CI Core
Engine

The CI Core Engine CO emission mass fraction lookup
table is a function of engine torque and engine speed,
CO Mass Fraction = ƒ(Speed, Torque), where:

• CO Mass Fraction is the CO emission mass fraction,
dimensionless.

• Speed is engine speed, in rpm.
• Torque is engine torque, in N·m.

2 Workflows
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Map Used For In Description
Nitric oxide
and nitrogen
dioxide (NOx)
mass fraction

NOx emissions CI Core
Engine

The CI Core Engine NOx emission mass fraction
lookup table is a function of engine torque and engine
speed, NOx Mass Fraction = ƒ(Speed, Torque), where:

• NOx Mass Fraction is the NOx emission mass
fraction, dimensionless.

• Speed is engine speed, in rpm.
• Torque is engine torque, in N·m.

 Engine Calibration Maps
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Map Used For In Description
Carbon
dioxide (CO2)
mass fraction

CO2 emissions CI Core
Engine

The CI Core Engine CO2 emission mass fraction lookup
table is a function of engine torque and engine speed,
CO2 Mass Fraction = ƒ(Speed, Torque), where:

• CO2 Mass Fraction is the CO2 emission mass
fraction, dimensionless.

• Speed is engine speed, in rpm.
• Torque is engine torque, in N·m.

2 Workflows
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Map Used For In Description
Exhaust
temperature

Engine exhaust
temperature as
a function of
injected fuel
mass and
engine speed

CI Core
Engine

CI
Controller

The lookup table for the exhaust temperature is a
function of injected fuel mass and engine speed

Texh = fTexh(F, N)

where:

• Texh is exhaust temperature, in K.
• F is injected fuel mass, in mg per injection.
• N is engine speed, in rpm.

Engine brake
torque

Engine brake
torque as a
function of
commanded
fuel mass and
engine speed

Mapped CI
Engine

The engine brake torque lookup table is a function of
commanded fuel mass and engine speed, Tbrake = ƒ(F,
N), where:

• Tbrake is engine torque, in N·m.
• F is commanded fuel mass, in mg per injection.
• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used For In Description
Engine air
mass flow

Engine air mass
flow as a
function of
commanded
fuel mass and
engine speed

Mapped CI
Engine

The air mass flow lookup table is a function of
commanded fuel mass and engine speed, ṁintk =
ƒ(Fmax, N), where:

• ṁintk is engine air mass flow, in kg/s.
• Fmax is commanded fuel mass, in mg per injection.
• N is engine speed, in rpm.

Engine fuel
flow

Engine fuel flow
as a function of
commanded
fuel mass and
engine speed

Mapped CI
Engine

The engine fuel flow lookup table is a function of
commanded fuel mass and engine speed, MassFlow=
ƒ(F, N), where:

• MassFlow is engine fuel mass flow, in kg/s.
• F is commanded fuel mass, in mg per injection.
• N is engine speed, in rpm.

2 Workflows
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Map Used For In Description
Engine
exhaust
temperature

Engine exhaust
temperature as
a function of
commanded
fuel mass and
engine speed

Mapped CI
Engine

The engine exhaust temperature table is a function of
commanded fuel mass and engine speed, Texh= ƒ(F, N),
where:

• Texhis exhaust temperature, in K.
• F is commanded fuel mass, in mg per injection.
• N is engine speed, in rpm.

Brake-specific
fuel
consumption
(BSFC)
efficiency

BSFC efficiency
as a function of
commanded
fuel mass and
engine speed

Mapped CI
Engine

The brake-specific fuel consumption (BSFC) efficiency
is a function of commanded fuel mass and engine
speed, BSFC= ƒ(F, N), where:

• BSFC is BSFC, in g/kWh.
• F is commanded fuel mass, in mg per injection.
• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used For In Description
Engine-out
(EO)
hydrocarbon
emissions

EO hydrocarbon
emissions as a
function of
commanded
fuel mass and
engine speed

Mapped CI
Engine

The engine-out hydrocarbon emissions are a function
of commanded fuel mass and engine speed, EO HC=
ƒ(F, N), where:

• EO HC is engine-out hydrocarbon emissions, in
kg/s.

• F is commanded fuel mass, in mg per injection.
• N is engine speed, in rpm.

Engine-out
(EO) carbon
monoxide
emissions

EO carbon
monoxide
emissions as a
function of
commanded
fuel mass and
engine speed

Mapped CI
Engine

The engine-out carbon monoxide emissions are a
function of commanded fuel mass and engine speed,
EO CO= ƒ(F, N), where:

• EO CO is engine-out carbon monoxide emissions, in
kg/s.

• F is commanded fuel mass, in mg per injection.
• N is engine speed, in rpm.

2 Workflows
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Map Used For In Description
Engine-out
(EO) nitric
oxide and
nitrogen
dioxide

EO nitric oxide
and nitrogen
dioxide
emissions as a
function of
commanded
fuel mass and
engine speed

Mapped CI
Engine

The engine-out nitric oxide and nitrogen dioxide
emissions are a function of commanded fuel mass and
engine speed, EO NOx= ƒ(F, N), where:

• EO NOx is engine-out nitric oxide and nitrogen
dioxide emissions, in kg/s.

• F is commanded fuel mass, in mg per injection.
• N is engine speed, in rpm.

Engine-out
(EO) carbon
dioxide
emissions

EO carbon
dioxide
emissions as a
function of
commanded
fuel mass and
engine speed

Mapped CI
Engine

The engine-out carbon dioxide emissions are a
function of commanded fuel mass and engine speed,
EO CO2= ƒ(F, N), where:

• EO CO2 is engine-out carbon dioxide emissions, in
kg/s.

• F is commanded fuel mass, in mg per injection.
• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used For In Description
Commanded
exhaust gas
recirculation
(EGR) valve
area percent

Commanded
exhaust gas
recirculation
(EGR) valve
area percent as
a function of
commanded
torque and
engine speed

CI
Controller

The commanded exhaust gas recirculation (EGR) valve
area percent lookup table is a function of commanded
torque and engine speed

EGRcmd = fEGRcmd(Trqcmd, N)

where:

• EGRcmd is commanded EGR valve area percent, in
percent.

• Trqcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.

2 Workflows
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Map Used For In Description
Variable
geometry
turbocharger
(VGT) rack
position

Variable
geometry
turbocharger
(VGT) rack
position as a
function of
commanded
torque and
engine speed

CI
Controller

The variable geometry turbocharger (VGT) rack
position lookup table is a function of commanded
torque and engine speed

RPcmd = fRPcmd(Trqcmd, N)

where:

• RPcmd is VGT rack position command, in percent.
• Trqcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used For In Description
Commanded
total fuel
mass per
injection

Commanded
total fuel mass
per injection as
a function of
torque
command and
engine speed

CI
Controller

The commanded total fuel mass per injection table is a
function of the torque command and engine speed

Fcmd, tot = fFcmd, tot(Trqcmd, N)

where:

• Fcmd,tot = F is commanded total fuel mass per
injection, in mg per cylinder.

• Trqcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.

Main start-of-
injection
(SOI) timing

SOI timing as a
function of
commanded
fuel mass and
engine speed

CI
Controller

The main start-of-injection (SOI) timing lookup table is
a function of commanded fuel mass and engine speed

MAINSOI = f (Fcmd, tot, N)

where:

• MAINSOI is the main start-of-injection timing, in
degrees crank angle after top dead center
(degATDC).

• Fcmd,tot = F is commanded fuel mass, in mg per
injection.

• N is engine speed, in rpm.

2 Workflows
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Map Used For In Description
Standard
exhaust gas
recirculation
(EGR) mass
flow

EGR mass flow
as a function of
the standard
flow pressure
ratio and EGR
valve flow area

CI
Controller

The standard exhaust gas recirculation (EGR) mass
flow is a lookup table that is a function of the standard
flow pressure ratio and EGR valve flow area

ṁegr, std = f ( MAP
Pexh, est

, EGRap)

where:

• ṁegr, std is the standard EGR valve mass flow, in g/s.
• Pexh,est is the estimated exhaust back-pressure, in

Pa.
• MAP is the cycle average intake manifold absolute

pressure, in Pa.
• EGRap is the measured EGR valve area, in percent.

 Engine Calibration Maps
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Map Used For In Description
Turbocharger
pressure ratio

Turbocharger
pressure ratio
as a function of
the standard air
mass flow and
corrected
turbocharger
speed

CI
Controller

The turbocharger pressure ratio, corrected for
variable geometry turbocharger (VGT) speed, is a
lookup table that is a function of the standard air mass
flow and corrected turbocharger speed,
Prturbo = f (ṁairstd, Nvgtcorr), where:

• Prturbo is the turbocharger pressure ratio, corrected
for VGT speed.

• ṁairstd is the standard air mass flow, in g/s.
• Nvgtcorr is the corrected turbocharger speed, in rpm/

K^(1/2).

Turbocharger
pressure ratio
correction

Turbocharger
pressure ratio
correction as a
function of the
rack position

CI
Controller

The variable geometry turbocharger pressure ratio
correction is a function of the rack position, Prvgtcorr=
ƒ(VGTpos), where:

• Prvgtcorr is the turbocharger pressure ratio
correction.

• VGTpos is the variable geometry turbocharger (VGT)
rack position.

2 Workflows
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Calibration Maps in Spark-Ignition (SI) Blocks
In the engine models, the Powertrain Blockset blocks implement these calibration maps.

Map Used for In Description
Engine
volumetric
efficiency

“SI Engine
Speed-Density
Air Mass Flow
Model” on page
2-11

SI Core
Engine

SI
Controller

The engine volumetric efficiency lookup table, fηv, is a
function of intake manifold absolute pressure and
engine speed

ηv = fηv(MAP, N)

where:

• ηv is engine volumetric efficiency, dimensionless.
• MAP is intake manifold absolute pressure, in KPa.
• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used for In Description
Cylinder
volume at
intake valve
close table
(IVC)

“SI Engine
Dual-
Independent
Cam Phaser Air
Mass Flow
Model” on page
2-5

SI Core
Engine

SI
Controller

The cylinder volume at intake valve close table (IVC),
fVivc is a function of the intake cam phaser angle

VIVC = fVivc(φICP)

where:

• VIVC is cylinder volume at IVC, in L.
• φICP is intake cam phaser angle, in crank advance

degrees.

2 Workflows
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Map Used for In Description
Trapped mass
correction

“SI Engine
Dual-
Independent
Cam Phaser Air
Mass Flow
Model” on page
2-5

SI Core
Engine

SI
Controller

The trapped mass correction factor table, fTMcorr, is a
function of the normalized density and engine speed

TMcorr = fTMcorr(ρnorm,   N)

where:

• TMcorr, is trapped mass correction multiplier,
dimensionless.

• ρnorm is normalized density, dimensionless.
• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used for In Description
Air mass flow
at cam phaser
angles

“SI Engine
Dual-
Independent
Cam Phaser Air
Mass Flow
Model” on page
2-5

SI Core
Engine

SI
Controller

The phaser intake mass flow model lookup table is a
function of exhaust cam phaser angles and trapped air
mass flow

ṁintkideal = f intkideal(φECP, TMf low)

where:

• ṁintkideal is engine intake port mass flow at
arbitrary cam phaser angles, in g/s.

• φECP is exhaust cam phaser angle, in degrees crank
retard.

• TMf low is flow rate equivalent to corrected trapped
mass at the current engine speed, in g/s.

2 Workflows

2-58



Map Used for In Description
Air mass flow
correction

“SI Engine
Dual-
Independent
Cam Phaser Air
Mass Flow
Model” on page
2-5

SI Core
Engine

SI
Controller

The intake air mass flow correction lookup table,
faircorr, is a function of ideal load and engine speed

ṁair = ṁintkidealfaircorr(Lideal, N)

where:

• Lideal is engine load (normalized cylinder air mass)
at arbitrary cam phaser angles, uncorrected for
final steady-state cam phaser angles,
dimensionless.

• N is engine speed, in rpm.
• ṁair is engine intake air mass flow final correction

at steady-state cam phaser angles, in g/s.
• ṁintkideal is engine intake port mass flow at

arbitrary cam phaser angles, in g/s.

 Engine Calibration Maps
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Map Used for In Description
Inner torque “SI Engine

Torque
Structure
Model” on page
2-14

SI Core
Engine

SI
Controller

The inner torque lookup table, fTqinr, is a function of
engine speed and engine load, Tqinr = fTqinr(L, N),
where:

• Tqinr is inner torque based on gross indicated mean
effective pressure, in N·m.

• L is engine load at arbitrary cam phaser angles,
corrected for final steady-state cam phaser angles,
dimensionless.

• N is engine speed, in rpm.

Friction
torque

“SI Engine
Torque
Structure
Model” on page
2-14

SI Core
Engine

SI
Controller

The friction torque lookup table, fTf ric, is a function of
engine speed and engine load, Tf ric = fTf ric L, N ,
where:

• Tf ric is friction torque offset to inner torque, in
N·m.

• L is engine load at arbitrary cam phaser angles,
corrected for final steady-state cam phaser angles,
dimensionless.

• N is engine speed, in rpm.

2 Workflows
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Map Used for In Description
Pumping
torque

“SI Engine
Torque
Structure
Model” on page
2-14

SI Core
Engine

SI
Controller

The pumping work lookup table, ƒTpump, is a function of
engine load and engine speed, Tpump=ƒTpump(L,N),
where:

• Tpump is pumping work, in N·m.
• L is engine load, as a normalized cylinder air mass,

dimensionless.
• N is engine speed, in rpm.

Optimal spark
advance

“SI Engine
Torque
Structure
Model” on page
2-14

SI Core
Engine

SI
Controller

The optimal spark lookup table, fSAopt, is a function of
engine speed and engine load, SAopt = fSAopt(L, N),
where:

• SAopt is optimal spark advance timing for maximum
inner torque at stoichiometric air-fuel ratio (AFR),
in deg.

• L is engine load at arbitrary cam phaser angles,
corrected for final steady-state cam phaser angles,
dimensionless.

• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used for In Description
Spark
efficiency

“SI Engine
Torque
Structure
Model” on page
2-14

SI Core
Engine

SI
Controller

The spark efficiency lookup table, fMsa, is a function of
the spark retard from optimal

Msa = fMsa(ΔSA)
ΔSA = SAopt− SA

where:

• Msa is the spark retard efficiency multiplier,
dimensionless.

• ΔSAis the spark retard timing distance from
optimal spark advance, in deg.

2 Workflows
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Map Used for In Description
Lambda
efficiency

“SI Engine
Torque
Structure
Model” on page
2-14

SI Core
Engine

SI
Controller

The lambda efficiency lookup table, fMλ, is a function
of lambda, Mλ = fMλ(λ), where:

• Mλ is the lambda multiplier on inner torque to
account for the air-fuel ratio (AFR) effect,
dimensionless.

• λ is lambda, AFR normalized to stoichiometric fuel
AFR, dimensionless.

Simple torque “SI Engine
Simple Torque
Model” on page
2-20

SI Core
Engine

SI
Controller

For the simple torque lookup table model, the SI
engine uses a lookup table map that is a function of
engine speed and load, Tbrake = fTnL(L, N), where:

• Tbrake is engine brake torque after accounting for
spark advance, AFR, and friction effects, in N·m.

• L is engine load, as a normalized cylinder air mass,
dimensionless.

• N is engine speed, in rpm.

 Engine Calibration Maps
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Map Used for In Description
Hydrocarbon
(HC) mass
fraction

HC emissions SI Core
Engine

The SI Core Engine HC emission mass fraction lookup
table is a function of engine torque and engine speed,
HC Mass Fraction = ƒ(Speed, Torque), where:

• HC Mass Fraction is the HC emission mass
fraction, dimensionless.

• Speed is engine speed, in rpm.
• Torque is engine torque, in N·m.

2 Workflows
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Map Used for In Description
Carbon
monoxide
(CO) mass
fraction

CO emissions SI Core
Engine

The SI Core Engine CO emission mass fraction lookup
table is a function of engine torque and engine speed,
CO Mass Fraction = ƒ(Speed, Torque), where:

• CO Mass Fraction is the CO emission mass fraction,
dimensionless.

• Speed is engine speed, in rpm.
• Torque is engine torque, in N·m.

 Engine Calibration Maps
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Map Used for In Description
Nitric oxide
and nitrogen
dioxide (NOx)
mass fraction

NOx emissions SI Core
Engine

The SI Core Engine NOx emission mass fraction
lookup table is a function of engine torque and engine
speed, NOx Mass Fraction = ƒ(Speed, Torque), where:

• NOx Mass Fraction is the NOx emission mass
fraction, dimensionless.

• Speed is engine speed, in rpm.
• Torque is engine torque, in N·m.

2 Workflows
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Map Used for In Description
Carbon
dioxide (CO2)
mass fraction

CO2 emissions SI Core
Engine

The SI Core Engine CO2 emission mass fraction lookup
table is a function of engine torque and engine speed,
CO2 Mass Fraction = ƒ(Speed, Torque), where:

• CO2 Mass Fraction is the CO2 emission mass
fraction, dimensionless.

• Speed is engine speed, in rpm.
• Torque is engine torque, in N·m.

 Engine Calibration Maps
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Map Used for In Description
Exhaust
temperature

Engine exhaust
calculation as a
function of
engine speed
and load

SI Core
Engine

SI
Controller

The exhaust temperature lookup table, fTexh, is a
function of engine load and engine speed

Texh = fTexh(L, N)

where:

• Texh is engine exhaust temperature, in K.
• L is normalized cylinder air mass or engine load,

dimensionless.
• N is engine speed, in rpm.

Engine torque Engine brake
torque as a
function of
commanded
torque and
engine speed

Mapped SI
Engine

The engine torque lookup table is a function of
commanded engine torque and engine speed, T =
ƒ(Tcmd, N), where:

• T is engine torque, in N·m.
• Tcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.

2 Workflows
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Map Used for In Description
Engine air
mass flow

Engine air mass
flow as a
function of
commanded
torque and
engine speed

Mapped SI
Engine

The engine air mass flow lookup table is a function of
commanded engine torque and engine speed, ṁintk =
ƒ(Tcmd, N), where:

• ṁintk is engine air mass flow, in kg/s.
• Tcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.

Engine fuel
flow

Engine fuel flow
as a function of
commanded
torque mass
and engine
speed

Mapped SI
Engine

The engine fuel mass flow lookup table is a function of
commanded engine torque and engine speed,
MassFlow = ƒ(Tcmd, N), where:

• MassFlow is engine fuel mass flow, in kg/s.
• Tcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.
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Map Used for In Description
Engine
exhaust
temperature

Engine exhaust
temperature as
a function of
commanded
torque and
engine speed

Mapped SI
Engine

The engine exhaust temperature lookup table is a
function of commanded engine torque and engine
speed, Texh = ƒ(Tcmd, N), where:

• Texh is exhaust temperature, in K.
• Tcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.

Brake-specific
fuel
consumption
(BSFC)
efficiency

Brake-specific
fuel
consumption
(BSFC) as a
function of
commanded
torque and
engine speed

Mapped SI
Engine

The brake-specific fuel consumption (BSFC) efficiency
is a function of commanded engine torque and engine
speed, BSFC = ƒ(Tcmd, N), where:

• BSFC is BSFC, in g/kWh.
• Tcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.
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Map Used for In Description
Engine-out
(EO)
hydrocarbon
emissions

EO hydrocarbon
emissions as a
function of
commanded
torque and
engine speed

Mapped SI
Engine

The engine-out hydrocarbon emissions are a function
of commanded engine torque and engine speed, EO
HC = ƒ(Tcmd, N), where:

• EO HC is engine-out hydrocarbon emissions, in
kg/s.

• Tcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.

Engine-out
(EO) carbon
monoxide
emissions

EO carbon
monoxide
emissions as a
function of
commanded
torque and
engine speed

Mapped SI
Engine

The engine-out carbon monoxide emissions are a
function of commanded engine torque and engine
speed, EO CO = ƒ(Tcmd, N), where:

• EO CO is engine-out carbon monoxide emissions, in
kg/s.

• Tcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.
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Map Used for In Description
Engine-out
(EO) nitric
oxide and
nitrogen
dioxide
emissions

EO nitric oxide
and nitrogen
dioxide
emissions as a
function of
commanded
torque and
engine speed

Mapped SI
Engine

The engine-out nitric oxide and nitrogen dioxide
emissions are a function of commanded engine torque
and engine speed, EO NOx = ƒ(Tcmd, N), where:

• EO NOx is engine-out nitric oxide and nitrogen
dioxide emissions, in kg/s.

• Tcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.

Engine-out
(EO) carbon
dioxide
emissions

EO carbon
dioxide
emissions as a
function of
commanded
torque and
engine speed

Mapped SI
Engine

The engine-out carbon dioxide emissions are a
function of commanded engine torque and engine
speed, EO CO2 = ƒ(Tcmd, N), where:

• EO CO2 is engine-out carbon dioxide emissions, in
kg/s.

• Tcmd is commanded engine torque, in N·m.
• N is engine speed, in rpm.
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Map Used for In Description
Wastegate
area percent
command

Wastegate area
percent
command as a
function of the
commanded
engine load and
engine speed

SI
Controller

The wastegate area percent command lookup table,
fWAPcmd, is a function of the commanded engine load
and engine speed

WAPcmd = fWAPcmd Lcmd, N

where:

• WAPcmd is wastegate area percentage command, in
percent.

• Lcmd=L is commanded engine load, dimensionless.
• N is engine speed, in rpm.
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Map Used for In Description
Throttle
position
percent
command

Throttle
position percent
command as a
function of the
throttle area
percentage
command

SI
Controller

The throttle position percent command lookup table,
fTPPcmd, is a function of the throttle area percentage
command

TPPcmd = fTPPcmd TAPcmd

where:

• TPPcmd is throttle position percentage command, in
percent.

• TAPcmd is throttle area percentage command, in
percent.
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Map Used for In Description
Throttle area
percent
command

Throttle area
percent
command as a
function of
commanded
load and engine
speed

SI
Controller

The throttle area percent command lookup table,
fTAPcmd, is a function of commanded load and engine
speed

TAPcmd = fTAPcmd Lcmd, N

where:

• TAPcmd is throttle area percentage command, in
percent.

• Lcmd=L is commanded engine load, dimensionless.
• N is engine speed, in rpm.

Spark
advance

Spark advance
as a function of
estimated load
and engine
speed

SI
Controller

The spark advance lookup table is a function of
estimated load and engine speed.

SA = fSA Lest, N

where:

• SA is spark advance, in crank advance degrees.
• Lest=L is estimated engine load, dimensionless.
• N is engine speed, in rpm.
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Map Used for In Description
Commanded
lambda

Commanded
lambda as a
function of
estimated
engine load and
measured
engine speed

SI
Controller

The commanded lambda, λcmd, lookup table is a
function of estimated engine load and measured
engine speed

λcmd = fλcmd Lest, N

where:

• λcmd is commanded relative AFR, dimensionless.
• Lest=L is estimated engine load, dimensionless.
• N is engine speed, in rpm.

Intake cam
phaser angle
command

Intake cam
phaser angle
command as a
function of the
engine load and
engine speed

SI
Controller

The intake cam phaser angle command lookup table,
f ICPCMD, is a function of the engine load and engine
speed

φICPCMD = f ICPCMD Lest, N

where:

• φICPCMD is commanded intake cam phaser angle, in
degrees crank advance.

• Lest=L is estimated engine load, dimensionless.
• N is engine speed, in rpm.
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Map Used for In Description
Commanded
engine load

Commanded
engine load as a
function of the
commanded
torque and
engine speed

SI
Controller

The commanded engine load lookup table, fLcmd, is a
function of the commanded torque and engine speed

Lcmd = fLcmd Tcmd, N

where:

• Lcmd=L is commanded engine load, dimensionless.
• Tcmd is commanded torque, in N·m.
• N is engine speed, in rpm.

Exhaust cam
phaser angle

Exhaust cam
phaser angle as
a function of
the engine load
and engine
speed

SI
Controller

The exhaust cam phaser angle command lookup table,
fECPCMD, is a function of the engine load and engine
speed

φECPCMD = fECPCMD Lest, N

where:

• φECPCMD is commanded exhaust cam phaser angle,
in degrees crank retard.

• Lest=L is estimated engine load, dimensionless.
• N is engine speed, in rpm.
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See Also
SI Core Engine | CI Core Engine | Mapped SI Engine | Mapped CI Engine | SI Controller | CI
Controller

External Websites
• Virtual Engine Calibration: Making Engine Calibration Part of the Engine Hardware Design

Process

2 Workflows
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Internal Combustion Engine Reference Application Projects
Use these reference application projects as a starting point for your own vehicle and internal
combustion engine models.

Objective Model Reference
Design tradeoff analysis and
component sizing, control
parameter optimization, or
hardware-in-the-loop (HIL)
testing.

Full conventional vehicle with
spark-ignition (SI) or
combustion-ignition (CI)

“Explore the Conventional Vehicle
Reference Application” on page 3-
4

Engine and controller
calibration, validation, and
optimization before
integration with the vehicle
model.

CI engine plant and controller “Explore the CI Engine Dynamometer
Reference Application” on page 3-
10

SI engine plant and controller “Explore the SI Engine Dynamometer
Reference Application” on page 3-
14

See Also

Related Examples
• “Resize the CI Engine” on page 3-87
• “Resize the SI Engine” on page 3-94

More About
• “Analyze Power and Energy” on page 3-117
• “Hybrid and Electric Vehicle Reference Application Projects” on page 3-3
• “Internal Combustion Mapped and Dynamic Engine Models” on page 3-116
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Hybrid and Electric Vehicle Reference Application Projects
Use these reference applications as a starting point for your own vehicle hybrid and electric vehicle
models.

Objective Model Reference
Design tradeoff analysis and
component sizing, control
parameter optimization, or
hardware-in-the-loop (HIL)
testing.

Hybrid electric vehicle (HEV)
— Multimode

“Explore the Hybrid Electric Vehicle
Multimode Reference Application” on
page 3-18

HEV — Input power-split “Explore the Hybrid Electric Vehicle
Input Power-Split Reference
Application” on page 3-36

HEV — P0 “Explore the Hybrid Electric Vehicle
P0 Reference Application” on page 3-
45

HEV — P1 “Explore the Hybrid Electric Vehicle
P1 Reference Application” on page 3-
52

HEV — P2 “Explore the Hybrid Electric Vehicle
P2 Reference Application” on page 3-
59

HEV — P3 “Explore the Hybrid Electric Vehicle
P3 Reference Application” on page 3-
69

HEV — P4 “Explore the Hybrid Electric Vehicle
P4 Reference Application” on page 3-
76

Electric vehicle “Explore the Electric Vehicle
Reference Application” on page 3-
25

Fuel Cell Electric vehicle “Explore the Fuel Cell Electric
Vehicle Reference Application” on
page 3-31

Motor and controller under a
dynamometer test harness

“Explore the Motor Dynamometer
Reference Application” on page 3-
83

See Also

More About
• “Analyze Power and Energy” on page 3-117
• “Internal Combustion Engine Reference Application Projects” on page 3-2
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Explore the Conventional Vehicle Reference Application
The conventional vehicle reference application represents a full vehicle model with an internal
combustion engine, transmission, and associated powertrain control algorithms. Use the reference
application for powertrain matching analysis and component selection, control and diagnostic
algorithm design, and hardware-in-the-loop (HIL) testing. To create and open a working copy of the
conventional vehicle reference application project, enter

autoblkConVehStart 

By default, the conventional vehicle reference application is configured with these powertrain
subsystem variants:

• 1.5–L spark-ignition (SI) dynamic engine
• Performance mode transmission controller

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.

Reference Application
Element

Description Variants

Analyze Power and Energy Double-click Analyze Power
and Energy to open a live
script. Run the script to
evaluate and report power and
energy consumption at the
component- and system-level.
For more information about the
live script, see “Analyze Power
and Energy” on page 3-117.

NA

Drive Cycle Source block —
FTP75 (2474 seconds)

Generates a standard or user-
specified drive cycle velocity
versus time profile. Block output
is the selected or specified
vehicle longitudinal speed.

 

Environment subsystem Creates environment variables,
including road grade, wind
velocity, and ambient
temperature and pressure.
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Reference Application
Element

Description Variants

Longitudinal Driver
subsystem

Uses the Longitudinal Driver or
Open Loop variant to generate
normalized acceleration and
braking commands.

• Longitudinal Driver variant
implements a driver model
that uses vehicle target and
reference velocities.

• Open Loop variant allows
you to configure the
acceleration, deceleration,
gear, and clutch commands
with constant or signal-based
inputs.

✓

Controllers subsystem Implements a powertrain
control module (PCM)
containing a transmission
control module (TCM) and
engine control module (ECM).

✓

Passenger Car subsystem Implements a passenger car
that contains transmission
drivetrain and engine plant
model subsystems.

✓

Visualization subsystem Displays vehicle-level
performance, fuel economy, and
emission results that are useful
for powertrain matching and
component selection analysis.

 

Optimize Transmission Shift Maps
You can use the conventional vehicle reference application to optimize the transmission control
module (TCM) shift schedules. Use the optimized shift schedules to:

• Design control algorithms.
• Assess the impact of powertrain changes, such as an engine or gear ratio, on performance, fuel

economy, and emissions.

TCM shift schedule optimization requires Simulink Design Optimization, the Global Optimization
Toolbox, and Stateflow. To increase the performance of the optimization, consider also using the
Parallel Computing Toolbox.

To run the TCM shift schedule optimization, open a version of the conventional vehicle reference
application that includes the option to optimize transmission shift maps by using this command:

autoblkConVehShftOptStart

Click Optimize Transmission Shift Maps. Optimizing the shift schedules can take time to run.
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For more information, see “Optimize Transmission Control Module Shift Schedules” on page 7-15.

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Engine plant and drivetrain efficiencies, including an engine plant histogram of time spent at the
different engine efficiencies.

• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

For more information about the live script, see “Analyze Power and Energy” on page 3-117.

Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands

Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar Proportional-integral (PI) control with tracking windup

and feed-forward gains.
Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.

Shift Basic Stateflow chart models reverse, neutral, and drive gear
shift scheduling.

External Input gear, vehicle state, and velocity feedback generates
acceleration and braking commands to track forward and
reverse vehicle motion.

None No transmission.
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Block Variants Description
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

To idle the engine at the beginning of a drive cycle and simulate catalyst light-off before moving the
vehicle with a pedal command, use the Longitudinal Driver variant. The Longitudinal Driver
subsystem includes an ignition switch signal profile, IgSw. The engine controller uses the ignition
switch signal to start both the engine and a catalyst light-off timer.

The catalyst light-off timer overrides the engine stop-start (ESS) stop function control while the
catalyst light-off timer is counting up. During the simulation, after the IgSw down-edge time reaches
the catalyst light-off time CatLightOffTime, normal ESS operation resumes. If there is no torque
command before the simulation reaches the EngStopTime, the ESS shuts down the engine.

To control ESS and catalyst light-off:

• In the Longitudinal Driver Model subsystem, set the ignition switch profile IgSw to 'on'.

• In the engine controller model workspace, set these calibration parameters:

• EngStopStartEnable — Enables ESS. To disable ESS, set the value to false.
• CatLightOffTime — Engine idle time from engine start to catalyst light-off.
• EngStopTime — ESS engine run time after driver model torque request cut-off.

Controllers
To implement a powertrain control module (PCM), the Controller subsystem has a transmission
control module (TCM) and an engine control module (ECM). The reference application has these
variants.

Controller Variant Description
Engine
controller —
ECM

SiEngineController
(default)

SI engine controller

CiEngineController CI engine controller
Transmission
controller —
TCM

PowertrainMaxPowerCont
roller (default)

Performance mode transmission controller
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Controller Variant Description
PowertrainBestFuelCont
roller

Fuel economy mode transmission controller

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains drivetrain and engine plant
model subsystems. To create your own internal combustion engine variants for the reference
application, use the CI and SI engine project templates. The reference application has these variants.

Drivetrain
Subsystem

Variant Description

Dual clutch
transmission
(DCT)

DCT Block (default) Configure drivetrain with DCT block or DCT system.
For the DCT system, you can configure the type of
filter.

DCT System

Differential and
Compliance

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the all wheel drive variant, you
can configure the type of coupling torque.

Front Wheel Drive
(default)
Rear Wheel Drive

Vehicle Vehicle Body 3 DOF
Longitudinal

Vehicle configured for 3 degrees of freedom.

Wheels and
Brakes

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the wheels, you can configure
the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique
blocks to model each wheel increases model
complexity and computational cost.

Front Wheel Drive
(default)
Rear Wheel Drive
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Engine
Subsystem

Variant Description

Engine SiEngineCore Dynamic SI Core Engine with turbocharger
SiEngineCoreNA Dynamic naturally aspirated SI Core Engine
SiEngineCoreV Dynamic SI V Twin-Turbo Single-Intake Engine
SiEngineCoreVNA Dynamic SI V Engine
SiEngineCoreVThr2 Dynamic SI V Twin-Turbo Twin-Intake Engine
SiMappedEngine (default) Mapped SI Engine with implicit turbocharger
SiDLEngine Deep learning SI engine
CiEngine Dynamic CI Core Engine with turbocharger
CiMappedEngine Mapped CI Engine with implicit turbocharger

See Also
Drive Cycle Source | Longitudinal Driver | SI Core Engine | Mapped SI Engine | SI Controller |
Mapped CI Engine | CI Core Engine | CI Controller

Related Examples
• “Conventional Vehicle Reference Application” on page 7-2
• “Conventional Vehicle Spark-Ignition Engine Fuel Economy and Emissions” on page 1-10
• “Conventional Vehicle Powertrain Efficiency” on page 1-15
• “Optimize Transmission Control Module Shift Schedules” on page 7-15
• “Track Drive Cycle Errors” on page 5-3

More About
• “Analyze Power and Energy” on page 3-117
• “Internal Combustion Engine Reference Application Projects” on page 3-2
• Simulation Data Inspector
• “Variant Systems”
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Explore the CI Engine Dynamometer Reference Application
The compression-ignition (CI) engine dynamometer reference application represents a CI engine
plant and controller connected to an AC dynamometer with a tailpipe emission analyzer. Using the
reference application, you can calibrate, validate, and optimize the engine controller and plant model
parameters before integrating the engine with the vehicle model. To create and open a working copy
of the CI engine dynamometer reference application project, enter

autoblkCIDynamometerStart 

By default, the reference application is configured with a 1.5–L CI dynamic engine.

You can configure the reference application project for different dynamometer control modes. To
implement the operating modes, the reference application uses variant subsystems.

This table summarizes the dynamometer tests.

Test Objective Method CI Engine Variant
Mapped Dynamic

Execute Engine
Mapping
Experiment

Assess engine torque,
fuel flow, and
emission performance
results using an
existing engine
controller calibration.

Dynamometer controller
commands a series of engine
speeds and torques to the
engine controller. At each
quasi-steady-state operating
point, the experiment records
the engine plant model output
and the controller commands
for the current calibration
parameters.

✓ ✓

Execute Model
Predictive Control
Plant Model
Experiment

Generate transient
engine datasets for
linear plant models
useful for model
predictive controllers.

Dynamometer controller
commands engine speed and
torque dynamically as a
function of time using a pseudo
random binary sequence.
Experiment records the
transient engine torque,
temperature, airflow, and
emission responses determined
from linear dynamic plant
model fitting via system
identification.

✓ ✓

Recalibrate
Controller

Match measured
engine torque to
commanded engine
torque across engine
operating range.

Dynamometer controller
generates a feedforward fuel
command table by matching
the measured engine torque to
the commanded engine torque
across the engine operating
range.

 ✓
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Test Objective Method CI Engine Variant
Mapped Dynamic

Resize Engine and
Recalibrate
Controller

Match engine torque
to desired engine
power and number of
cylinders.

Dynamometer resizes the
dynamic engine and engine
calibration parameters. Also,
the dynamometer recalibrates
the controller and mapped
engine model to match the
resized dynamic engine.

✓ ✓

Generate Mapped
Engine from
Spreadsheet

Generate a mapped
engine calibration
from a data
spreadsheet. Update
the mapped engine
with the calibrated
data.

Dynamometer uses the Model-
Based Calibration Toolbox to fit
data from a spreadsheet,
generate calibrated tables, and
update the mapped engine
parameters.

✓  

Engine System
The reference application includes variant subsystems for mapped (steady-state) and dynamic 1.5–L
CI engine systems with a variable geometry turbocharger (VGT). Using the CI engine project
template, you can create your own CI engine variants.

Objective Engine Variant
Dynamic analysis, including manifold and
turbocharger dynamics

Dynamic

Faster execution Mapped

Dynamic

CiEngineCore.slx contains the engine intake system, exhaust system, exhaust gas recirculation
(EGR), fuel system, core engine, and turbocharger subsystems.
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Mapped

CiMappedEngine.slx uses the Mapped CI Engine block to look up power, air mass flow, fuel flow,
exhaust temperature, efficiency, and emission performance as functions of engine speed and injected
fuel mass.

Performance Monitor
The reference application contains a Performance Monitor block that you can use to plot steady-state
and dynamic results. You can plot:

• Steady-state results as a function of one or two variables.
• Dynamic results using the Simulation Data Inspector.

See Also
Mapped CI Engine | CI Core Engine | CI Controller

Related Examples
• “CI Engine Dynamometer Reference Application” on page 7-12
• “Generate Mapped CI Engine from a Spreadsheet” on page 3-101
• “Resize the CI Engine” on page 3-87
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More About
• “CI Engine Project Template” on page 4-2
• “Internal Combustion Mapped and Dynamic Engine Models” on page 3-116
• “Variant Systems”
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Explore the SI Engine Dynamometer Reference Application
The spark-ignition (SI) engine dynamometer reference application represents a SI engine plant and
controller connected to an AC dynamometer with a tailpipe emission analyzer. Using the reference
application, you can calibrate, validate, and optimize the engine controller and plant model
parameters before integrating the engine with the vehicle model. To create and open a working copy
of the SI engine dynamometer reference application project, enter

autoblkSIDynamometerStart 

By default, the reference application is configured with a 1.5–L SI dynamic engine.

You can configure the reference application project for different dynamometer control modes. To
implement the operating modes, the reference application uses variant subsystems.

This table summarizes the dynamometer tests.

Test Objective Method SI Engine Variant
Mapped Dynami

c
Execute Engine
Mapping
Experiment

Assess engine
torque, fuel flow,
and emission
performance
results using an
existing engine
controller
calibration.

Dynamometer controller commands a
series of engine speeds and torques to
the engine controller. At each quasi-
steady-state operating point, the
experiment records the engine plant
model output and the controller
commands for the current calibration
parameters.

✓ ✓

Execute Model
Predictive Control
Plant Model
Experiment

Generate
transient engine
datasets for linear
plant models
useful for model
predictive
controllers.

Dynamometer controller commands
engine speed and torque dynamically
as a function of time using a pseudo
random binary sequence. Experiment
records the transient engine torque,
temperature, airflow, and emission
responses determined from linear
dynamic plant model fitting via system
identification.

✓ ✓

Recalibrate
Controller

Match measured
engine torque to
commanded
engine torque
across engine
operating range.

Dynamometer controller generates a
feedforward throttle table by matching
the measured engine torque to the
commanded engine torque across the
engine operating range.

 ✓
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Test Objective Method SI Engine Variant
Mapped Dynami

c
Resize Engine and
Recalibrate
Controller

Match engine
torque to desired
engine power and
number of
cylinders.

Dynamometer resizes the dynamic
engine and engine calibration
parameters. Also, the dynamometer
recalibrates the controller and mapped
engine model to match the resized
dynamic engine.

For an example, see “Resize the SI
Engine” on page 3-94.

✓ ✓

Generate Mapped
Engine from
Spreadsheet

Generate a
mapped engine
calibration from a
data spreadsheet.
Update the
mapped engine
with the
calibrated data.

Dynamometer uses the Model-Based
Calibration Toolbox to fit data from a
spreadsheet, generate calibrated
tables, and update the mapped engine
parameters.

For an example, see “Generate Mapped
SI Engine from a Spreadsheet” on page
3-106.

✓  

Generate Deep
Learning Engine
Model

Train a deep
learning model of
dynamic engine
behavior from
measured
laboratory data or
a high-fidelity
engine model.

Dynamometer uses the Deep Learning
Toolbox™ and Statistics and Machine
Learning Toolbox™ to generate a
dynamic deep learning engine model
and update the mapped engine
parameters.

For an example, see “Generate a Deep
Learning SI Engine Model” on page 3-
110.

✓  

Engine System
The reference application includes variant subsystems for mapped (steady-state) and dynamic
turbocharged 1.5–L SI engine. Using the SI engine project template, you can create your own SI
engine variants.

Objective Engine Variant
Dynamic analysis, including manifold and
turbocharger dynamics

Dynamic

Faster execution Mapped

Dynamic

SiEngineCore.slx contains the engine intake system, exhaust system, core engine, and
turbocharger subsystems.
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Mapped

SiMappedEngine.slx uses the Mapped SI Engine block to look up power, air mass flow, fuel flow,
exhaust temperature, efficiency, and emission performance as functions of engine speed and
commanded torque.

Performance Monitor
The reference application contains a Performance Monitor block that you can use to plot steady-state
and dynamic results. You can plot:

• Steady-state results as a function of one or two variables.
• Dynamic results using the Simulation Data Inspector.

See Also
SI Core Engine | Mapped SI Engine | SI Controller

Related Examples
• “SI Engine Dynamometer Reference Application” on page 7-13
• “Generate Mapped SI Engine from a Spreadsheet” on page 3-106
• “Generate a Deep Learning SI Engine Model” on page 3-110
• “Resize the SI Engine” on page 3-94

More About
• “SI Engine Project Template” on page 4-4
• “Internal Combustion Mapped and Dynamic Engine Models” on page 3-116
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• “Variant Systems”
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Explore the Hybrid Electric Vehicle Multimode Reference
Application

The hybrid electric vehicle reference application represents a full multimode hybrid electric vehicle
(HEV) model with an internal combustion engine, transmission, battery, motor, generator, and
associated powertrain control algorithms. Use the reference application for powertrain matching
analysis and component selection, control and diagnostic algorithm design, and hardware-in-the-loop
(HIL) testing. To create and open a working copy of the hybrid electric vehicle reference application
project, enter

autoblkHevStart 

By default, the HEV multimode reference application is configured with:

• Mapped motor and generator
• 1.5–L spark-ignition (SI) dynamic engine

This diagram shows the powertrain configuration.

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.
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Reference Application
Element

Description Variants

Analyze Power and Energy Double-click Analyze Power
and Energy to open a live
script. Run the script to
evaluate and report power and
energy consumption at the
component- and system-level.
For more information about the
live script, see “Analyze Power
and Energy” on page 3-117.

NA

Drive Cycle Source block —
FTP75 (2474 seconds)

Generates a standard or user-
specified drive cycle velocity
versus time profile. Block output
is the selected or specified
vehicle longitudinal speed.

✓

Environment subsystem Creates environment variables,
including road grade, wind
velocity, and atmospheric
temperature and pressure.

 

Longitudinal Driver
subsystem

Uses the Longitudinal Driver or
Open Loop variant to generate
normalized acceleration and
braking commands.

• Longitudinal Driver variant
implements a driver model
that uses vehicle target and
reference velocities.

• Open Loop variant allows
you to configure the
acceleration, deceleration,
gear, and clutch commands
with constant or signal-based
inputs.

✓

Controllers subsystem Implements a powertrain
control module (PCM)
containing a hybrid control
module (HCM) and an engine
control module (ECM).

✓

Passenger Car subsystem Implements a hybrid passenger
car that contains engine,
electric plant, and drivetrain
subsystems.

✓
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Reference Application
Element

Description Variants

Visualization subsystem Displays vehicle-level
performance, battery state of
charge (SOC), fuel economy, and
emission results that are useful
for powertrain matching and
component selection analysis.

 

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level. For more information about the
live script, see “Analyze Power and Energy” on page 3-117.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Engine plant, electric plant, and drivetrain plant efficiencies, including an engine histogram of

time spent at the different engine plant efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands

Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar Proportional-integral (PI) control with tracking windup

and feed-forward gains.
Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.
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Block Variants Description
Shift Basic Stateflow chart models reverse, neutral, and drive gear

shift scheduling.
External Input gear, vehicle state, and velocity feedback generates

acceleration and braking commands to track forward and
reverse vehicle motion.

None No transmission.
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

To idle the engine at the beginning of a drive cycle and simulate catalyst light-off before moving the
vehicle with a pedal command, use the Longitudinal Driver variant. The Longitudinal Driver
subsystem includes an ignition switch signal profile, IgSw. The engine controller uses the ignition
switch signal to start both the engine and a catalyst light-off timer.

The catalyst light-off timer overrides the engine stop-start (ESS) stop function control while the
catalyst light-off timer is counting up. During the simulation, after the IgSw down-edge time reaches
the catalyst light-off time CatLightOffTime, normal ESS operation resumes. If there is no torque
command before the simulation reaches the EngStopTime, the ESS shuts down the engine.

To control ESS and catalyst light-off:

• In the Longitudinal Driver Model subsystem, set the ignition switch profile IgSw to 'on'.

• In the engine controller model workspace, set these calibration parameters:

• EngStopStartEnable — Enables ESS. To disable ESS, set the value to false.
• CatLightOffTime — Engine idle time from engine start to catalyst light-off.
• EngStopTime — ESS engine run time after driver model torque request cut-off.

Controllers
The Controller subsystem has a PCM with an HCM and an ECM.

ECM

The reference application has these variants for the ECM.
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Controller Variant Description
ECM SiEngineController

(default)
SI engine controller

CiEngineController CI engine controller

HCM

The HCM implements a dynamic embedded controller that directly determines the engine operating
point that minimizes brake-specific fuel consumption (BSFC) while meeting or exceeding power
required by the battery charging and vehicle propulsion subsystems.

To calculate the optimal engine operating point in speed and torque, the controller starts with a
candidate set of discrete engine power levels. For each power level candidate, the block has a
parameterized vector of torque and speed operating points that minimize BSFC.

The optimizer then removes power level candidates that are unacceptable for either of these reasons:

• Too much power sent through the generator to the battery.
• Too little power to meet charging and propulsion subsystem requirements.

Of the remaining power level candidates, the controller selects the one with the lowest BSFC. The
controller then sends the associated torque / speed operating point command to the engine.

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains drivetrain, electric plant, and
engine subsystems. To create your own engine variants for the reference application, use the CI and
SI engine project templates. The reference application has these subsystem variants.
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Drivetrain

Drivetrain
Subsystem

Variant Description

Differential and
Compliance

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the all wheel drive variant, you
can configure the type of coupling torque.

Front Wheel Drive
(default)
Rear Wheel Drive

Vehicle Vehicle Body 3 DOF
Longitudinal

Configured for 3 degrees of freedom

Wheels and
Brakes

Longitudinal Wheel -
Front 1

For the wheels, you can configure the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique
blocks to model each wheel increases model
complexity and computational cost.

Longitudinal Wheel -
Rear 1

Electric Plant

Electric Plant
Subsystem

Variant Description

Battery BattHevMm (default) Configured with electric battery
Generator GenMapped (default) Mapped generator

GenDynamic Interior permanent magnet synchronous motor
(PMSM) with controller

Motor MotMapped (default) Mapped motor with implicit controller
MotDynamic Interior permanent magnet synchronous motor

(PMSM) with controller
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Engine

Engine
Subsystem

Variant Description

Engine SiEngineCore Dynamic SI Core Engine with turbocharger
SiEngineCoreNA Dynamic naturally aspirated SI Core Engine
SiEngineCoreV Dynamic SI V Twin-Turbo Single-Intake Engine
SiEngineCoreVNA Dynamic SI V Engine
SiEngineCoreVThr2 Dynamic SI V Twin-Turbo Twin-Intake Engine
SiMappedEngine (default) Mapped SI Engine with implicit turbocharger
SiDLEngine Deep learning SI engine
CiEngine Dynamic CI Core Engine with turbocharger
CiMappedEngine Mapped CI Engine with implicit turbocharger

References
[1] Higuchi, N., Shimada, H., Sunaga, Y., and Tanaka, M., Development of a New Two-Motor Plug-In

Hybrid System. SAE Technical Paper 2013-01-1476. Warrendale, PA: SAE International
Journal of Alternative Powertrains, 2013.

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| SI Core Engine | Mapped SI Engine | SI Controller | Mapped CI Engine | CI Core Engine | CI
Controller

Related Examples
• “HEV Multimode Reference Application” on page 7-3

More About
• “Analyze Power and Energy” on page 3-117
• “Hybrid and Electric Vehicle Reference Application Projects” on page 3-3
• “Variant Systems”
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Explore the Electric Vehicle Reference Application
The electric vehicle reference application represents a full electric vehicle model with a motor-
generator, battery, direct-drive transmission, and associated powertrain control algorithms. Use the
electric vehicle reference application for powertrain matching analysis and component selection,
control and diagnostic algorithm design, and hardware-in-the-loop (HIL) testing. To create and open a
working copy of the conventional vehicle reference application project, enter

autoblkEvStart 

The electric vehicle reference application is configured with a mapped motor and battery. This
diagram shows the powertrain configuration.

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.
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Reference Application
Element

Description Variants

Analyze Power and Energy Double-click Analyze Power
and Energy to open a live
script. Run the script to
evaluate and report power and
energy consumption at the
component- and system-level.
For more information about the
live script, see “Analyze Power
and Energy” on page 3-117.

NA

Drive Cycle Source block —
FTP75 (2474 seconds)

Generates a standard or user-
specified drive cycle velocity
versus time profile. Block output
is the selected or specified
vehicle longitudinal speed.

✓

Environment subsystem Creates environment variables,
including road grade, wind
velocity, and atmospheric
temperature and pressure.

 

Longitudinal Driver
subsystem

Uses the Longitudinal Driver or
Open Loop variant to generate
normalized acceleration and
braking commands.

• Longitudinal Driver variant
implements a driver model
that uses vehicle target and
reference velocities.

• Open Loop variant allows
you to configure the
acceleration, deceleration,
gear, and clutch commands
with constant or signal-based
inputs.

✓

Controllers subsystem Implements a powertrain
control module (PCM) with
regenerative braking, motor
torque arbitration and power
management.

✓
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Reference Application
Element

Description Variants

Passenger Car subsystem Implements a passenger car
that contains an electric plant
and drivetrain subsystems.

To model the electric plant, use
the Toggle To Simscape
Electric Plant button to switch
between Simscape and
Powertrain Blockset variants of
the plant subsystem. By default,
the reference application uses
the Powertrain Blockset variant.
The Simscape variant
incorporates physical
connections to provide a flexible
way to assemble components.

✓

Visualization subsystem Displays vehicle-level
performance, battery state of
charge (SOC), and equivalent
fuel economy results that are
useful for powertrain matching
and component selection
analysis.

 

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Electric plant and drivetrain plant efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

For more information about the live script, see “Analyze Power and Energy” on page 3-117.

Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands
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Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar
(default)

Proportional-integral (PI) control with tracking windup
and feed-forward gains.

Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.

Shift Basic Stateflow chart models reverse, neutral, and drive gear
shift scheduling.

External Input gear, vehicle state, and velocity feedback generates
acceleration and braking commands to track forward and
reverse vehicle motion.

None (default) No transmission.
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

Controllers
To determine the motor torque and brake pressure commands, the reference application implements
a supervisory controller. Specifically, the controller subsystem includes a powertrain control module
(PCM) with:

• Regenerative braking control
• Motor torque arbitration and power management

• Converts the driver accelerator pedal signal to a torque request.
• Converts the driver brake pedal signal to a brake pressure request. The algorithm multiplies

the brake pedal signal by a maximum brake pressure.
• Implements a regenerative braking algorithm for the traction motor to recover the maximum

amount of kinetic energy from the vehicle.
• Implements a virtual battery management system. The algorithm outputs the dynamic

discharge and charge power limits as functions of battery state of charge (SOC).
• Implements a power management algorithm that ensures the battery dynamic discharge and

charge power limits are not exceeded.

Regen Braking Control has these variants.
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Controller Variant Description
Regen Braking
Control

Series Regen Brake
(default)

Friction braking provides the torque not supplied by
regenerative motor braking.

Parallel Regen
Braking

Friction braking and regenerative motor braking
independently provide the torque.

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains a drivetrain and electric
plant subsystem. The reference application has these variants.

Drivetrain

Drivetrain
Subsystem

Variant Description

Differential and
Compliance

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the all wheel drive variant, you
can configure the type of coupling torque.

Front Wheel Drive
(default)
Rear Wheel Drive

Vehicle Vehicle Body 3 DOF
Longitudinal

Configured for 3 degrees of freedom

Wheels and
Brakes

Longitudinal Wheel -
Front 1

For the wheels, you can configure the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique
blocks to model each wheel increases model
complexity and computational cost.

Longitudinal Wheel -
Rear 1

Electric Plant

To model the electric plant, use the Toggle To Simscape Electric Plant button to switch between
Simscape and Powertrain Blockset variants of the plant subsystem. By default, the reference
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application uses the Powertrain Blockset variant. The Simscape variant incorporates physical
connections to provide a flexible way to assemble components.

Electric Plant
Subsystem

Variant Description

Battery BattEv (default) Configured with electric battery
Motor MotGenEvMapped (default) Mapped motor with implicit controller

MotGenEvDynamic Interior permanent magnet synchronous motor
(PMSM) with controller

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| Mapped Motor

Related Examples
• “EV Reference Application” on page 7-10

More About
• “Analyze Power and Energy” on page 3-117
• “Hybrid and Electric Vehicle Reference Application Projects” on page 3-3
• “Variant Systems”
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Explore the Fuel Cell Electric Vehicle Reference Application
To design an energy system for a hydrogen-based vehicle, use the fuel cell reference application
project with a high-fidelity fuel cell model in Simscape. You can switch between a detailed and a
mapped fuel cell. Use these models for design tradeoff analysis and component sizing, control
parameter optimization, and hardware-in-the-loop (HIL) testing. To create and open a working copy of
the reference application project, enter

autoblkFCEvStart 

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.

Reference Application
Element

Description Variants

Analyze Power and Energy Double-click Analyze Power
and Energy to open a live
script. Run the script to
evaluate and report power and
energy consumption at the
component- and system-level.
For more information about the
live script, see “Analyze Power
and Energy” on page 3-117.

NA

Generate Mapped Fuel Cell
from Spreadsheet

Use the Model-Based
Calibration Toolbox to create a
mapped fuel cell model from
measured fuel cell performance
data stored in a spreadsheet.
For more information, see
“Generate Mapped Fuel Cell
from a Spreadsheet” on page 3-
121.

NA

Drive Cycle Source block —
FTP75 (2474 seconds)

Generates a standard or user-
specified drive cycle velocity
versus time profile. Block output
is the selected or specified
vehicle longitudinal speed.

✓

Environment subsystem Creates environment variables,
including road grade, wind
velocity, and atmospheric
temperature and pressure.
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Reference Application
Element

Description Variants

Longitudinal Driver
subsystem

Uses the Longitudinal Driver or
Open Loop variant to generate
normalized acceleration and
braking commands.

• Longitudinal Driver variant
implements a driver model
that uses vehicle target and
reference velocities.

• Open Loop variant allows
you to configure the
acceleration, deceleration,
gear, and clutch commands
with constant or signal-based
inputs.

✓

Controllers subsystem Implements a powertrain
control module (PCM) with
regenerative braking, motor
torque arbitration and power
management.

✓

Passenger Car subsystem Implements a passenger car
that contains an electric plant
and drivetrain subsystems.

✓

Visualization subsystem Displays vehicle-level
performance, battery state of
charge (SOC), and equivalent
fuel economy results that are
useful for powertrain matching
and component selection
analysis.

 

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Electric plant and drivetrain plant efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

For more information about the live script, see “Analyze Power and Energy” on page 3-117.
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Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands

Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar
(default)

Proportional-integral (PI) control with tracking windup
and feed-forward gains.

Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.

Shift Basic Stateflow chart models reverse, neutral, and drive gear
shift scheduling.

External Input gear, vehicle state, and velocity feedback generates
acceleration and braking commands to track forward and
reverse vehicle motion.

None (default) No transmission.
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

Controllers
To determine the motor torque and brake pressure commands, the reference application implements
a supervisory controller. Specifically, the controller subsystem includes a powertrain control module
(PCM) with:

• Regenerative braking control
• Motor torque arbitration and power management

• Converts the driver accelerator pedal signal to a torque request.
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• Converts the driver brake pedal signal to a brake pressure request. The algorithm multiplies
the brake pedal signal by a maximum brake pressure.

• Implements a regenerative braking algorithm for the traction motor to recover the maximum
amount of kinetic energy from the vehicle.

• Implements a virtual battery management system. The algorithm outputs the dynamic
discharge and charge power limits as functions of battery state of charge (SOC).

• Implements a power management algorithm that ensures the battery dynamic discharge and
charge power limits are not exceeded.

Regen Braking Control has these variants.

Controller Variant Description
Regen Braking
Control

Series Regen Brake
(default)

Friction braking provides the torque not supplied by
regenerative motor braking.

Parallel Regen
Braking

Friction braking and regenerative motor braking
independently provide the torque.

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains a drivetrain and electric
plant subsystem. The reference application has these variants.

Drivetrain

Drivetrain
Subsystem

Variant Description

Differential and
Compliance

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the all wheel drive variant, you
can configure the type of coupling torque.

Front Wheel Drive
(default)
Rear Wheel Drive

Vehicle Vehicle Body 3 DOF
Longitudinal

Configured for 3 degrees of freedom

Wheels and
Brakes

Longitudinal Wheel -
Front 1

For the wheels, you can configure the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
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Drivetrain
Subsystem

Variant Description

Longitudinal Wheel -
Rear 1

which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique
blocks to model each wheel increases model
complexity and computational cost.

Electric Plant

Electric Plant
Subsystem

Variant Description

Battery BattEv (default) Configured with electric battery
Motor MotGenEvMapped (default) Mapped motor with implicit controller

MotGenEvDynamic Interior permanent magnet synchronous motor
(PMSM) with controller

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| Mapped Motor

Related Examples
• “FCEV Reference Application” on page 7-11

More About
• “Analyze Power and Energy” on page 3-117
• “Hybrid and Electric Vehicle Reference Application Projects” on page 3-3
• “Variant Systems”
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Explore the Hybrid Electric Vehicle Input Power-Split Reference
Application

The hybrid electric vehicle (HEV) input power-split reference application represents a full HEV model
with an internal combustion engine, transmission, battery, motor, generator, and associated
powertrain control algorithms. Use the HEV input power-split reference application for HIL testing,
tradeoff analysis, and control parameter optimization of a power-split hybrid like the Toyota® Prius®.
To create and open a working copy of the HEV input power-split reference application project, enter

autoblkHevIpsStart 

By default, the HEV input power-split reference application is configured with:

• Nickel-metal hydride (NiMH) battery pack
• Mapped electric motors
• Mapped spark-ignition (SI) engine

This diagram shows the powertrain configuration.

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.
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Reference Application
Element

Description Variants

Analyze Power and Energy Double-click Analyze Power
and Energy to open a live
script. Run the script to
evaluate and report power and
energy consumption at the
component- and system-level.
For more information about the
live script, see “Analyze Power
and Energy” on page 3-117.

NA

Drive Cycle Source block —
FTP75 (2474 seconds)

Generates a standard or user-
specified drive cycle velocity
versus time profile. Block output
is the selected or specified
vehicle longitudinal speed.

✓

Environment subsystem Creates environment variables,
including road grade, wind
velocity, and atmospheric
temperature and pressure.

 

Longitudinal Driver
subsystem

Uses the Longitudinal Driver or
Open Loop variant to generate
normalized acceleration and
braking commands.

• Longitudinal Driver variant
implements a driver model
that uses vehicle target and
reference velocities.

• Open Loop variant allows
you to configure the
acceleration, deceleration,
gear, and clutch commands
with constant or signal-based
inputs.

✓

Controllers subsystem Implements a powertrain
control module (PCM)
containing an input power-split
hybrid control module (HCM)
and an engine control module
(ECM).

✓

Passenger Car subsystem Implements a hybrid passenger
car that contains drivetrain,
electric plant, and engine
subsystems.

✓
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Reference Application
Element

Description Variants

Visualization subsystem Displays vehicle-level
performance, battery state of
charge (SOC), fuel economy, and
emission results that are useful
for powertrain matching and
component selection analysis.

 

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level. For more information about the
live script, see “Analyze Power and Energy” on page 3-117.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Engine plant, electric plant, and drivetrain plant efficiencies, including an engine histogram of

time spent at the different engine plant efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands

Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar Proportional-integral (PI) control with tracking windup

and feed-forward gains.
Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.
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Block Variants Description
Shift Basic Stateflow chart models reverse, neutral, and drive gear

shift scheduling.
External Input gear, vehicle state, and velocity feedback generates

acceleration and braking commands to track forward and
reverse vehicle motion.

None No transmission.
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

To idle the engine at the beginning of a drive cycle and simulate catalyst light-off before moving the
vehicle with a pedal command, use the Longitudinal Driver variant. The Longitudinal Driver
subsystem includes an ignition switch signal profile, IgSw. The engine controller uses the ignition
switch signal to start both the engine and a catalyst light-off timer.

The catalyst light-off timer overrides the engine stop-start (ESS) stop function control while the
catalyst light-off timer is counting up. During the simulation, after the IgSw down-edge time reaches
the catalyst light-off time CatLightOffTime, normal ESS operation resumes. If there is no torque
command before the simulation reaches the EngStopTime, the ESS shuts down the engine.

To control ESS and catalyst light-off:

• In the Longitudinal Driver Model subsystem, set the ignition switch profile IgSw to 'on'.

• In the engine controller model workspace, set these calibration parameters:

• EngStopStartEnable — Enables ESS. To disable ESS, set the value to false.
• CatLightOffTime — Engine idle time from engine start to catalyst light-off.
• EngStopTime — ESS engine run time after driver model torque request cut-off.

Controllers
The Controller subsystem has a PCM containing an input power-split HCM and an ECM. The
controller has these variants.
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Controller Variant Description
ECM SiEngineController

(default)
SI engine controller

Input power
split HCM

Series Regen Brake
(default)

Friction braking provides the torque not supplied
by regenerative motor braking.

Parallel Regen Braking Friction braking and regenerative motor braking
independently provide the torque.

The input-power split HCM implements a dynamic supervisory controller that determines the engine
torque, generator torque, motor torque, and brake pressure commands. Specifically, the input power-
split HCM:

• Converts the driver accelerator pedal signal to a wheel torque request. The algorithm uses the
optimal engine torque and maximum motor torque curves to calculate the total powertrain torque
at the wheels.

• Converts the driver brake pedal signal to a brake pressure request. The algorithm multiplies the
brake pedal signal by a maximum brake pressure.

• Implements a regenerative braking algorithm for the traction motor to recover the maximum
amount of kinetic energy from the vehicle.

• Implements a virtual battery management system. The algorithm outputs the dynamic discharge
and charge power limits as functions of battery SOC.

• Determines the vehicle operating mode through a set of rules and decision logic implemented in
Stateflow. The operating modes are functions of wheel speed and requested wheel torque. The
algorithm uses the wheel power request, accelerator pedal, battery SOC, and vehicle speed rules
to transition between electric vehicle (EV) and HEV modes.

Mode Description
EV Traction motor provides the wheel torque request.
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Mode Description
HEV – Charge
Sustaining
(Low Power)

• Engine provides the wheel torque request.
• Torque blending algorithm transitions the torque production from the EV

motor to the HEV engine. The algorithm allows the motor to ramp down the
torque while the engine torque ramps up. Once the blending is complete,
the motor can start sustaining the charge (negative torque), if needed.

• Based on the target battery SOC and available kinetic energy, the HEV
mode determines a charge sustain power level. The mode includes the
additional charge power in the engine power command. To provide the
desired charge power, the traction motor acts as a generator.

• Depending on the instantaneous speeds of the engine and motor, the
generator may consume energy while regulating the engine speed. In this
case, the motor provides the additional charge sustaining power.

HEV – Charge
Depleting
(High Power)

• Engine provides the wheel power request up to its maximum output.
• If the wheel torque request is greater than the engine torque output at the

wheels, the traction motor provides the remainder of the wheel torque
request.

Stationary While the vehicle is at rest, the engine and generator can provide optional
charging if battery SOC is below a minimum SOC value.

• Controls the motor, generator, and engine through a set of rules and decision logic implemented in
Stateflow.

Control Description
Engine • Decision logic determines the engine operation modes (off, start, run).

• In engine run mode, lookup tables determine the engine torque and engine
speed that optimizes the break-specific fuel consumption (BSFC) for a given
engine power request. The ECM uses the optimal engine torque command.
The generator control uses the optimal engine speed command.
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Control Description
Generator • As determined by the HCM, the generator either starts the engine or

regulates the engine speed. To regulate the engine speed, the generator
uses a PI controller.

• A rule-based power management algorithm calculates a generator torque
that does not exceed the dynamic power limits.

Motor A rule-based power management algorithm calculates a motor torque that
does not exceed the dynamic power limits.

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains drivetrain, electric plant, and
engine subsystems. To create your own engine variants for the reference application, use the CI and
SI engine project templates. The reference application has these subsystem variants.

Drivetrain

Drivetrain
Subsystem

Variant Description

Differential and
Compliance

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the all wheel drive variant, you
can configure the type of coupling torque.

Front Wheel Drive
(default)
Rear Wheel Drive

Gearbox Ideal Fixed Gear
Transmission

Configure gearbox efficiency with a constant
(default) or 3D lookup table.

Vehicle Vehicle Body 3 DOF
Longitudinal

Configured for 3 degrees of freedom

Wheels and
Brakes

Longitudinal Wheel -
Front 1

For the wheels, you can configure the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique

3 Reference Applications

3-42



Drivetrain
Subsystem

Variant Description

Longitudinal Wheel -
Rear 1

blocks to model each wheel increases model
complexity and computational cost.

Electric Plant

Electric Plant
Subsystem

Variant Description

Battery and DC-
DC Converter

BattHevIps Configured with NiMH battery

Generator GenMapped (default) Mapped generator with implicit controller
GenDynamic Interior permanent magnet synchronous motor

(PMSM) with controller
Motor MotMapped (default) Mapped motor with implicit controller

MotDynamic Interior permanent magnet synchronous motor
(PMSM) with controller

Engine

Engine
Subsystem

Variant Description

Engine SiMappedEngine (default) Mapped SI engine
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Related Examples
• “HEV Input Power-Split Reference Application” on page 7-4
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More About
• “Analyze Power and Energy” on page 3-117
• “Hybrid and Electric Vehicle Reference Application Projects” on page 3-3
• “Variant Systems”

3 Reference Applications

3-44



Explore the Hybrid Electric Vehicle P0 Reference Application
The hybrid electric vehicle (HEV) P0 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P0 hybrid. To create and open a working copy of the
reference application project, enter

autoblkHevP0Start 

By default, the HEV P0 reference application is configured with:

• Lithium-ion battery pack
• Mapped electric motor
• Mapped spark-ignition (SI) engine

This diagram shows the powertrain configuration.

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.
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Reference
Application
Element

Description Variants

Analyze Power
and Energy

Double-click Analyze Power and
Energy to open a live script. Run the
script to evaluate and report power and
energy consumption at the component-
and system-level. For more information
about the live script, see “Analyze
Power and Energy” on page 3-117.

NA

Drive Cycle
Source block —
FTP75 (2474
seconds)

Generates a standard or user-specified
drive cycle velocity versus time profile.
Block output is the selected or
specified vehicle longitudinal speed.

✓

Environment
subsystem

Creates environment variables,
including road grade, wind velocity,
and atmospheric temperature and
pressure.

 

Longitudinal
Driver
subsystem

Uses the Longitudinal Driver or Open
Loop variant to generate normalized
acceleration and braking commands.

• Longitudinal Driver variant
implements a driver model that uses
vehicle target and reference
velocities.

• Open Loop variant allows you to
configure the acceleration,
deceleration, gear, and clutch
commands with constant or signal-
based inputs.

✓

Controllers
subsystem

Implements a powertrain control
module (PCM) containing a P0 hybrid
control module (HCM), an engine
control module (ECM), and a
transmission control module (TCM).

✓
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Reference
Application
Element

Description Variants

Passenger Car
subsystem

Implements a hybrid passenger car
that contains drivetrain, electric plant,
and engine subsystems.

To model the drivetrain, use the Toggle
To Simscape Drivetrain button to
switch between Simscape and
Powertrain Blockset variants of the
drivetrain subsystem. By default, the
reference application uses the
Powertrain Blockset variant. The
Simscape variant incorporates physical
connections to provide a flexible way to
assemble components.

✓

Visualization
subsystem

Displays vehicle-level performance,
battery state of charge (SOC), fuel
economy, and emission results that are
useful for powertrain matching and
component selection analysis.

 

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level. For more information about the
live script, see “Analyze Power and Energy” on page 3-117.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Engine plant, electric plant, and drivetrain plant efficiencies, including an engine histogram of

time spent at the different engine plant efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands
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Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar Proportional-integral (PI) control with tracking windup

and feed-forward gains.
Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.

Shift Basic Stateflow chart models reverse, neutral, and drive gear
shift scheduling.

External Input gear, vehicle state, and velocity feedback generates
acceleration and braking commands to track forward and
reverse vehicle motion.

None No transmission.
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

To idle the engine at the beginning of a drive cycle and simulate catalyst light-off before moving the
vehicle with a pedal command, use the Longitudinal Driver variant. The Longitudinal Driver
subsystem includes an ignition switch signal profile, IgSw. The engine controller uses the ignition
switch signal to start both the engine and a catalyst light-off timer.

The catalyst light-off timer overrides the engine stop-start (ESS) stop function control while the
catalyst light-off timer is counting up. During the simulation, after the IgSw down-edge time reaches
the catalyst light-off time CatLightOffTime, normal ESS operation resumes. If there is no torque
command before the simulation reaches the EngStopTime, the ESS shuts down the engine.

To control ESS and catalyst light-off:

• In the Longitudinal Driver Model subsystem, set the ignition switch profile IgSw to 'on'.
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• In the engine controller model workspace, set these calibration parameters:

• EngStopStartEnable — Enables ESS. To disable ESS, set the value to false.
• CatLightOffTime — Engine idle time from engine start to catalyst light-off.
• EngStopTime — ESS engine run time after driver model torque request cut-off.

Controllers
The Controller subsystem has a PCM containing an ECM, HCM, and TCM. The controller has these
variants.

Controller Variant Description
ECM SiEngineController

(default)
Implements the SI Controller

CiEngineController Implements the CI Controller
HCM ECMS Implements the Equivalent Consumption

Minimization Strategy
TCM TransmissionController Implements the transmission controller

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains drivetrain, electric plant, and
engine subsystems. To create your own engine variants for the reference application, use the CI and
SI engine project templates. The reference application has these subsystem variants.

Drivetrain

To model the drivetrain, use the Toggle To Simscape Drivetrain button to switch between
Simscape and Powertrain Blockset variants of the drivetrain subsystem. By default, the reference
application uses the Powertrain Blockset variant. The Simscape variant incorporates physical
connections to provide a flexible way to assemble components.

Tip The reference application sets the appropriate solvers to optimize performance for each engine
and drivetrain combination. Select the engine variant first, then select the drivetrain using the toggle
button. If you select the drivetrain before changing the engine, you may encounter a solver error.
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Drivetrain
Subsystem

Variant Description

Differential and
Compliance

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the all wheel drive variant, you
can configure the type of coupling torque.

Front Wheel Drive
(default)
Rear Wheel Drive

Torque
Converter
Automatic
Transmission

Ideal Fixed Gear
Transmission

Configure locked and unlocked transmission
efficiency with either a 1D or 4D (default) lookup
table.

Torque Converter Configure for external, internal (default), or no
lockup.

Vehicle Vehicle Body 1 DOF
Longitudinal

Configured for 1 degrees of freedom

Wheels and
Brakes

Longitudinal Wheel -
Front 1

For the wheels, you can configure the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique
blocks to model each wheel increases model
complexity and computational cost.

Longitudinal Wheel -
Rear 1

Electric Plant

Electric Plant
Subsystem

Variant Description

Battery BattHevP0 Configured with Lithium Ion battery
Electric Machine MotMapped Mapped Motor with implicit controller
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Engine

Engine
Subsystem

Variant Description

Engine SiEngineCore Dynamic SI Core Engine with turbocharger
SiMappedEngine (default) Mapped SI Engine with implicit turbocharger
SiEngineCoreNA Dynamic naturally aspirated SI Core Engine

Limitations
MathWorks used the SI Core Engine and SI Controller to calibrate the hybrid control module (HCM).
If you use the CI Core Engine and CI Controller variants, the simulation may error because the HCM
does not use calibrated results.

Acknowledgment
MathWorks would like to acknowledge the contribution of Dr. Simona Onori to the ECMS optimal
control algorithm implemented in this reference application. Dr. Onori is a Professor of Energy
Resources Engineering at Stanford University. Her research interests include electrochemical
modeling, estimation and optimization of energy storage devices for automotive and grid-level
applications, hybrid and electric vehicles modeling and control, PDE modeling, and model-order
reduction and estimation of emission mitigation systems. She is a senior member of IEEE®.
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Related Examples
• “HEV P0 Reference Application” on page 7-5

More About
• “Analyze Power and Energy” on page 3-117
• “Hybrid and Electric Vehicle Reference Application Projects” on page 3-3
• “Variant Systems”
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Explore the Hybrid Electric Vehicle P1 Reference Application
The hybrid electric vehicle (HEV) P1 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P1 hybrid. To create and open a working copy of the
reference application project, enter

autoblkHevP1Start 

By default, the HEV P1 reference application is configured with:

• Lithium-ion battery pack
• Mapped electric motor
• Mapped spark-ignition (SI) engine

This diagram shows the powertrain configuration.

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.
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Reference
Application
Element

Description Variants

Analyze Power
and Energy

Double-click Analyze Power and
Energy to open a live script. Run the
script to evaluate and report power and
energy consumption at the component-
and system-level. For more information
about the live script, see “Analyze
Power and Energy” on page 3-117.

NA

Drive Cycle
Source block —
FTP75 (2474
seconds)

Generates a standard or user-specified
drive cycle velocity versus time profile.
Block output is the selected or
specified vehicle longitudinal speed.

✓

Environment
subsystem

Creates environment variables,
including road grade, wind velocity,
and atmospheric temperature and
pressure.

 

Longitudinal
Driver
subsystem

Uses the Longitudinal Driver or Open
Loop variant to generate normalized
acceleration and braking commands.

• Longitudinal Driver variant
implements a driver model that uses
vehicle target and reference
velocities.

• Open Loop variant allows you to
configure the acceleration,
deceleration, gear, and clutch
commands with constant or signal-
based inputs.

✓

Controllers
subsystem

Implements a powertrain control
module (PCM) containing a P1 hybrid
control module (HCM), an engine
control module (ECM), and a
transmission control module (TCM).

✓
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Reference
Application
Element

Description Variants

Passenger Car
subsystem

Implements a hybrid passenger car
that contains drivetrain, electric plant,
and engine subsystems.

To model the drivetrain, use the Toggle
To Simscape Drivetrain button to
switch between Simscape and
Powertrain Blockset variants of the
drivetrain subsystem. By default, the
reference application uses the
Powertrain Blockset variant. The
Simscape variant incorporates physical
connections to provide a flexible way to
assemble components.

✓

Visualization
subsystem

Displays vehicle-level performance,
battery state of charge (SOC), fuel
economy, and emission results that are
useful for powertrain matching and
component selection analysis.

 

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level. For more information about the
live script, see “Analyze Power and Energy” on page 3-117.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Engine plant, electric plant, and drivetrain plant efficiencies, including an engine histogram of

time spent at the different engine plant efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands
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Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar Proportional-integral (PI) control with tracking windup

and feed-forward gains.
Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.

Shift Basic Stateflow chart models reverse, neutral, and drive gear
shift scheduling.

External Input gear, vehicle state, and velocity feedback generates
acceleration and braking commands to track forward and
reverse vehicle motion.

None No transmission.
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

To idle the engine at the beginning of a drive cycle and simulate catalyst light-off before moving the
vehicle with a pedal command, use the Longitudinal Driver variant. The Longitudinal Driver
subsystem includes an ignition switch signal profile, IgSw. The engine controller uses the ignition
switch signal to start both the engine and a catalyst light-off timer.

The catalyst light-off timer overrides the engine stop-start (ESS) stop function control while the
catalyst light-off timer is counting up. During the simulation, after the IgSw down-edge time reaches
the catalyst light-off time CatLightOffTime, normal ESS operation resumes. If there is no torque
command before the simulation reaches the EngStopTime, the ESS shuts down the engine.

To control ESS and catalyst light-off:

• In the Longitudinal Driver Model subsystem, set the ignition switch profile IgSw to 'on'.
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• In the engine controller model workspace, set these calibration parameters:

• EngStopStartEnable — Enables ESS. To disable ESS, set the value to false.
• CatLightOffTime — Engine idle time from engine start to catalyst light-off.
• EngStopTime — ESS engine run time after driver model torque request cut-off.

Controllers
The Controller subsystem has a PCM containing an ECM, HCM, and TCM. The controller has these
variants.

Controller Variant Description
ECM SiEngineController

(default)
Implements the SI Controller

CiEngineController Implements the CI Controller
HCM ECMS Implements the Equivalent Consumption

Minimization Strategy
TCM TransmissionController Implements the transmission controller

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains drivetrain, electric plant, and
engine subsystems. To create your own engine variants for the reference application, use the CI and
SI engine project templates. The reference application has these subsystem variants.

Drivetrain

To model the drivetrain, use the Toggle To Simscape Drivetrain button to switch between
Simscape and Powertrain Blockset variants of the drivetrain subsystem. By default, the reference
application uses the Powertrain Blockset variant. The Simscape variant incorporates physical
connections to provide a flexible way to assemble components.

Tip The reference application sets the appropriate solvers to optimize performance for each engine
and drivetrain combination. Select the engine variant first, then select the drivetrain using the toggle
button. If you select the drivetrain before changing the engine, you may encounter a solver error.
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Drivetrain
Subsystem

Variant Description

Differential and
Compliance

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the all wheel drive variant, you
can configure the type of coupling torque.

Front Wheel Drive
(default)
Rear Wheel Drive

Torque
Converter
Automatic
Transmission

Ideal Fixed Gear
Transmission

Configure locked and unlocked transmission
efficiency with either a 1D or 4D (default) lookup
table.

Torque Converter Configure for external, internal (default), or no
lockup.

Vehicle Vehicle Body 1 DOF
Longitudinal

Configured for 1 degrees of freedom

Wheels and
Brakes

Longitudinal Wheel -
Front 1

For the wheels, you can configure the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique
blocks to model each wheel increases model
complexity and computational cost.

Longitudinal Wheel -
Rear 1

Electric Plant

Electric Plant
Subsystem

Variant Description

Battery BattHevP1 Configured with Lithium Ion battery
Electric Machine MotMapped Mapped Motor with implicit controller
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Engine

Engine
Subsystem

Variant Description

Engine SiEngineCore Dynamic SI Core Engine with turbocharger
SiMappedEngine (default) Mapped SI Engine with implicit turbocharger
SiEngineCoreNA Dynamic naturally aspirated SI Core Engine

Limitations
MathWorks used the SI Core Engine and SI Controller to calibrate the hybrid control module (HCM).
If you use the CI Core Engine and CI Controller variants, the simulation may error because the HCM
does not use calibrated results.

Acknowledgment
MathWorks would like to acknowledge the contribution of Dr. Simona Onori to the ECMS optimal
control algorithm implemented in this reference application. Dr. Onori is a Professor of Energy
Resources Engineering at Stanford University. Her research interests include electrochemical
modeling, estimation and optimization of energy storage devices for automotive and grid-level
applications, hybrid and electric vehicles modeling and control, PDE modeling, and model-order
reduction and estimation of emission mitigation systems. She is a senior member of IEEE.
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Explore the Hybrid Electric Vehicle P2 Reference Application
The hybrid electric vehicle (HEV) P2 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P2 hybrid. To create and open a working copy of the
reference application project, enter

autoblkHevP2Start 

By default, the HEV P2 reference application is configured with:

• Lithium-ion battery pack
• Mapped electric motor
• Mapped spark-ignition (SI) engine

This diagram shows the powertrain configuration.

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.
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Reference
Application
Element

Description Variants

Analyze Power
and Energy

Double-click Analyze Power and
Energy to open a live script. Run the
script to evaluate and report power and
energy consumption at the component-
and system-level. For more information
about the live script, see “Analyze
Power and Energy” on page 3-117.

NA

Drive Cycle
Source block —
FTP75 (2474
seconds)

Generates a standard or user-specified
drive cycle velocity versus time profile.
Block output is the selected or
specified vehicle longitudinal speed.

✓

Environment
subsystem

Creates environment variables,
including road grade, wind velocity,
and atmospheric temperature and
pressure.

 

Longitudinal
Driver
subsystem

Uses the Longitudinal Driver or Open
Loop variant to generate normalized
acceleration and braking commands.

• Longitudinal Driver variant
implements a driver model that uses
vehicle target and reference
velocities.

• Open Loop variant allows you to
configure the acceleration,
deceleration, gear, and clutch
commands with constant or signal-
based inputs.

✓

Controllers
subsystem

Implements a powertrain control
module (PCM) containing a P2 hybrid
control module (HCM), an engine
control module (ECM), and a
transmission control module (TCM).

✓
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Reference
Application
Element

Description Variants

Passenger Car
subsystem

Implements a hybrid passenger car
that contains drivetrain, electric plant,
and engine subsystems.

To model the drivetrain, use the Toggle
To Simscape Drivetrain button to
switch between Simscape and
Powertrain Blockset variants of the
drivetrain subsystem. By default, the
reference application uses the
Powertrain Blockset variant. The
Simscape variant incorporates physical
connections to provide a flexible way to
assemble components.

✓

Visualization
subsystem

Displays vehicle-level performance,
battery state of charge (SOC), fuel
economy, and emission results that are
useful for powertrain matching and
component selection analysis.

 

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level. For more information about the
live script, see “Analyze Power and Energy” on page 3-117.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Engine plant, electric plant, and drivetrain plant efficiencies, including an engine histogram of

time spent at the different engine plant efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands
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Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar Proportional-integral (PI) control with tracking windup

and feed-forward gains.
Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.

Shift Basic Stateflow chart models reverse, neutral, and drive gear
shift scheduling.

External Input gear, vehicle state, and velocity feedback generates
acceleration and braking commands to track forward and
reverse vehicle motion.

None No transmission.
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

To idle the engine at the beginning of a drive cycle and simulate catalyst light-off before moving the
vehicle with a pedal command, use the Longitudinal Driver variant. The Longitudinal Driver
subsystem includes an ignition switch signal profile, IgSw. The engine controller uses the ignition
switch signal to start both the engine and a catalyst light-off timer.

The catalyst light-off timer overrides the engine stop-start (ESS) stop function control while the
catalyst light-off timer is counting up. During the simulation, after the IgSw down-edge time reaches
the catalyst light-off time CatLightOffTime, normal ESS operation resumes. If there is no torque
command before the simulation reaches the EngStopTime, the ESS shuts down the engine.

To control ESS and catalyst light-off:

• In the Longitudinal Driver Model subsystem, set the ignition switch profile IgSw to 'on'.
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• In the engine controller model workspace, set these calibration parameters:

• EngStopStartEnable — Enables ESS. To disable ESS, set the value to false.
• CatLightOffTime — Engine idle time from engine start to catalyst light-off.
• EngStopTime — ESS engine run time after driver model torque request cut-off.

Controllers
The Controller subsystem has a PCM containing an ECM, HCM, and TCM. The controller has these
variants.

Controller Variant Description
ECM SiEngineController

(default)
Implements the SI Controller

CiEngineController Implements the CI Controller
TCM TransmissionController Implements the transmission controller
HCM Optimal

Control
(default)

Energy
Management
System

Implements the Equivalent Consumption
Minimization Strategy

Rule-Based
Control

P2
Supervisory
Control

Implements a dynamic supervisory controller that
determines the engine torque, motor torque,
starter, clutch, and brake pressure commands.

Regen
Braking
Control

Implements a parallel or series regenerative
braking controller during rule-based control.

Rule-Based Control

The HCM implements a dynamic supervisory controller that determines the engine torque, motor
torque, starter, clutch, and brake pressure commands. Specifically, the HCM:

• Converts the driver accelerator pedal signal to a torque request. The algorithm uses the optimal
engine torque and maximum motor torque curves to calculate the total powertrain torque.

• Converts the driver brake pedal signal to a brake pressure request. The algorithm multiplies the
brake pedal signal by a maximum brake pressure.

• Implements a regenerative braking algorithm for the traction motor to recover the maximum
amount of kinetic energy from the vehicle.

• Implements a virtual battery management system. The algorithm outputs the dynamic discharge
and charge power limits as functions of battery SOC.
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The HCM determines the vehicle operating mode through a set of rules and decision logic
implemented in Stateflow. The operating modes are functions of motor speed and requested torque.
The algorithm uses the calculated power request, accelerator pedal, battery SOC, and vehicle speed
rules to transition between electric vehicle (EV) and parallel HEV modes.

Mode Description
EV Traction motor provides the torque request.
Parallel
HEV

The engine and the motor split the power request. Based on the target battery SOC and
available kinetic energy, the HEV mode determines a charge sustain power level. The
parallel HEV mode adds the charge sustain power to the engine power command. To
provide the desired charge sustain power, the traction motor acts as a generator if
charging is needed, and as a motor if discharging is needed. If the power request is
greater than the engine power, the traction motor provides the remainder of the power
request.

Stationa
ry

While the vehicle is at rest, the engine and generator can provide optional charging if
battery SOC is below a minimum SOC value.

The HCM controls the motor, and engine through a set of rules and decision logic implemented in
Stateflow.
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Control Description
Engine • Decision logic determines the engine operation modes (off, start, on).

• To start the engine in engine start (stationary) mode, the motor closes clutch 1 and
puts the transmission in neutral. If the high-voltage battery SOC is low, the mode uses
the low-voltage starter motor.

• To start the engine in engine start (driving) mode, the mode uses the low-voltage
starter motor with clutch 1 open. To connect the driveline, the engine controller
matches the engine and motor speeds and closes clutch 1.

• In engine on (stationary) mode, lookup tables determine the engine torque and engine
speed that optimizes the brake-specific fuel consumption (BSFC) for a given engine
power request. The ECM uses the optimal engine torque command. The motor control
uses the optimal engine speed command.

• In engine on (parallel HEV) mode, a lookup table determines the engine torque for a
given engine power. However, because the drivetrain couples the engine and wheel
speeds, engine on mode might not operate at speeds that minimize BSFC.

Motor A rule-based power management algorithm calculates a motor torque that does not
exceed the dynamic power limits.

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains drivetrain, electric plant, and
engine subsystems. To create your own engine variants for the reference application, use the CI and
SI engine project templates. The reference application has these variants.

Drivetrain

To model the drivetrain, use the Toggle To Simscape Drivetrain button to switch between
Simscape and Powertrain Blockset variants of the drivetrain subsystem. By default, the reference
application uses the Powertrain Blockset variant. The Simscape variant incorporates physical
connections to provide a flexible way to assemble components.
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Tip The reference application sets the appropriate solvers to optimize performance for each engine
and drivetrain combination. Select the engine variant first, then select the drivetrain using the toggle
button. If you select the drivetrain before changing the engine, you may encounter a solver error.

Drivetrain
Subsystem

Variant Description

Differential and
Compliance

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the all wheel drive variant, you
can configure the type of coupling torque.

Front Wheel Drive
(default)
Rear Wheel Drive

Torque
Converter
Automatic
Transmission

Ideal Fixed Gear
Transmission

Configure locked and unlocked transmission
efficiency with either a 1D or 4D (default) lookup
table.

Torque Converter Configure for external, internal (default), or no
lockup.

Vehicle Vehicle Body 1 DOF
Longitudinal

Configured for 1 degrees of freedom

Wheels and
Brakes

Longitudinal Wheel -
Front 1

For the wheels, you can configure the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique
blocks to model each wheel increases model
complexity and computational cost.

Longitudinal Wheel -
Rear 1

Electric Plant

Electric Plant
Subsystem

Variant Description

Battery BattHevP2 Configured with Lithium Ion battery and DC-DC
converter
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Electric Plant
Subsystem

Variant Description

Low Voltage
Starting System

StarterSystemP2 Configured with a low voltage starting system

Motor MotMapped (default) Mapped Motor with implicit controller
MotDynamic Interior permanent magnet synchronous motor

(PMSM) with controller

Engine

Engine
Subsystem

Variant Description

Engine SiEngineCore Dynamic SI Core Engine with turbocharger
SiMappedEngine (default) Mapped SI Engine with implicit turbocharger
SiEngineCoreNA Dynamic naturally aspirated SI Core Engine

Limitations
MathWorks used the SI Core Engine and SI Controller to calibrate the hybrid control module (HCM).
If you use the CI Core Engine and CI Controller variants, the simulation may error because the HCM
does not use calibrated results.

Acknowledgment
MathWorks would like to acknowledge the contribution of Dr. Simona Onori to the ECMS optimal
control algorithm implemented in this reference application. Dr. Onori is a Professor of Energy
Resources Engineering at Stanford University. Her research interests include electrochemical
modeling, estimation and optimization of energy storage devices for automotive and grid-level
applications, hybrid and electric vehicles modeling and control, PDE modeling, and model-order
reduction and estimation of emission mitigation systems. She is a senior member of IEEE.
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More About
• “Analyze Power and Energy” on page 3-117
• “Hybrid and Electric Vehicle Reference Application Projects” on page 3-3
• “Variant Systems”
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Explore the Hybrid Electric Vehicle P3 Reference Application
The hybrid electric vehicle (HEV) P3 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P3 hybrid. To create and open a working copy of the
reference application project, enter

autoblkHevP3Start 

By default, the HEV P3 reference application is configured with:

• Lithium-ion battery pack
• Mapped electric motor
• Mapped spark-ignition (SI) engine

This diagram shows the powertrain configuration.

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.
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Reference
Application
Element

Description Variants

Analyze Power
and Energy

Double-click Analyze Power and
Energy to open a live script. Run the
script to evaluate and report power and
energy consumption at the component-
and system-level. For more information
about the live script, see “Analyze
Power and Energy” on page 3-117.

NA

Drive Cycle
Source block —
FTP75 (2474
seconds)

Generates a standard or user-specified
drive cycle velocity versus time profile.
Block output is the selected or
specified vehicle longitudinal speed.

✓

Environment
subsystem

Creates environment variables,
including road grade, wind velocity,
and atmospheric temperature and
pressure.

 

Longitudinal
Driver
subsystem

Uses the Longitudinal Driver or Open
Loop variant to generate normalized
acceleration and braking commands.

• Longitudinal Driver variant
implements a driver model that uses
vehicle target and reference
velocities.

• Open Loop variant allows you to
configure the acceleration,
deceleration, gear, and clutch
commands with constant or signal-
based inputs.

✓

Controllers
subsystem

Implements a powertrain control
module (PCM) containing a P3 hybrid
control module (HCM), an engine
control module (ECM), and a
transmission control module (TCM).

✓
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Reference
Application
Element

Description Variants

Passenger Car
subsystem

Implements a hybrid passenger car
that contains drivetrain, electric plant,
and engine subsystems.

To model the drivetrain, use the Toggle
To Simscape Drivetrain button to
switch between Simscape and
Powertrain Blockset variants of the
drivetrain subsystem. By default, the
reference application uses the
Powertrain Blockset variant. The
Simscape variant incorporates physical
connections to provide a flexible way to
assemble components.

✓

Visualization
subsystem

Displays vehicle-level performance,
battery state of charge (SOC), fuel
economy, and emission results that are
useful for powertrain matching and
component selection analysis.

 

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level. For more information about the
live script, see “Analyze Power and Energy” on page 3-117.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Engine plant, electric plant, and drivetrain plant efficiencies, including an engine histogram of

time spent at the different engine plant efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands
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Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar Proportional-integral (PI) control with tracking windup

and feed-forward gains.
Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.

Shift Basic Stateflow chart models reverse, neutral, and drive gear
shift scheduling.

External Input gear, vehicle state, and velocity feedback generates
acceleration and braking commands to track forward and
reverse vehicle motion.

None No transmission.
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

To idle the engine at the beginning of a drive cycle and simulate catalyst light-off before moving the
vehicle with a pedal command, use the Longitudinal Driver variant. The Longitudinal Driver
subsystem includes an ignition switch signal profile, IgSw. The engine controller uses the ignition
switch signal to start both the engine and a catalyst light-off timer.

The catalyst light-off timer overrides the engine stop-start (ESS) stop function control while the
catalyst light-off timer is counting up. During the simulation, after the IgSw down-edge time reaches
the catalyst light-off time CatLightOffTime, normal ESS operation resumes. If there is no torque
command before the simulation reaches the EngStopTime, the ESS shuts down the engine.

To control ESS and catalyst light-off:

• In the Longitudinal Driver Model subsystem, set the ignition switch profile IgSw to 'on'.
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• In the engine controller model workspace, set these calibration parameters:

• EngStopStartEnable — Enables ESS. To disable ESS, set the value to false.
• CatLightOffTime — Engine idle time from engine start to catalyst light-off.
• EngStopTime — ESS engine run time after driver model torque request cut-off.

Controllers
The Controller subsystem has a PCM containing an ECM, HCM, and TCM. The controller has these
variants.

Controller Variant Description
ECM SiEngineController

(default)
Implements the SI Controller

CiEngineController Implements the CI Controller
HCM ECMS Implements the Equivalent Consumption

Minimization Strategy
TCM TransmissionController Implements the transmission controller

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains drivetrain, electric plant, and
engine subsystems. To create your own engine variants for the reference application, use the CI and
SI engine project templates. The reference application has these subsystem variants.

Drivetrain

To model the drivetrain, use the Toggle To Simscape Drivetrain button to switch between
Simscape and Powertrain Blockset variants of the drivetrain subsystem. By default, the reference
application uses the Powertrain Blockset variant. The Simscape variant incorporates physical
connections to provide a flexible way to assemble components.

Tip The reference application sets the appropriate solvers to optimize performance for each engine
and drivetrain combination. Select the engine variant first, then select the drivetrain using the toggle
button. If you select the drivetrain before changing the engine, you may encounter a solver error.
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Drivetrain
Subsystem

Variant Description

Differential and
Compliance

All Wheel Drive Configure drivetrain for all wheel, front wheel, or
rear wheel drive. For the all wheel drive variant, you
can configure the type of coupling torque.

Front Wheel Drive
(default)
Rear Wheel Drive

Torque
Converter
Automatic
Transmission

Ideal Fixed Gear
Transmission

Configure locked and unlocked transmission
efficiency with either a 1D or 4D (default) lookup
table.

Torque Converter Configure for external, internal (default), or no
lockup.

Vehicle Vehicle Body 1 DOF
Longitudinal

Configured for 1 degrees of freedom

Wheels and
Brakes

Longitudinal Wheel -
Front 1

For the wheels, you can configure the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique
blocks to model each wheel increases model
complexity and computational cost.

Longitudinal Wheel -
Rear 1

Electric Plant

Electric Plant
Subsystem

Variant Description

Battery BattHevP3 Configured with Lithium Ion battery
Electric Machine MotMapped Mapped Motor with implicit controller
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Engine

Engine
Subsystem

Variant Description

Engine SiEngineCore Dynamic SI Core Engine with turbocharger
SiMappedEngine (default) Mapped SI Engine with implicit turbocharger
SiEngineCoreNA Dynamic naturally aspirated SI Core Engine

Limitations
MathWorks used the SI Core Engine and SI Controller to calibrate the hybrid control module (HCM).
If you use the CI Core Engine and CI Controller variants, the simulation may error because the HCM
does not use calibrated results.

Acknowledgment
MathWorks would like to acknowledge the contribution of Dr. Simona Onori to the ECMS optimal
control algorithm implemented in this reference application. Dr. Onori is a Professor of Energy
Resources Engineering at Stanford University. Her research interests include electrochemical
modeling, estimation and optimization of energy storage devices for automotive and grid-level
applications, hybrid and electric vehicles modeling and control, PDE modeling, and model-order
reduction and estimation of emission mitigation systems. She is a senior member of IEEE.
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Explore the Hybrid Electric Vehicle P4 Reference Application
The hybrid electric vehicle (HEV) P4 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P4 hybrid. To create and open a working copy of the
reference application project, enter

autoblkHevP4Start 

By default, the HEV P4 reference application is configured with:

• Lithium-ion battery pack
• Mapped electric motor
• Mapped spark-ignition (SI) engine

This diagram shows the powertrain configuration.

This table describes the blocks and subsystems in the reference application, indicating which
subsystems contain variants. To implement the model variants, the reference application uses variant
subsystems.
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Reference
Application
Element

Description Variants

Analyze Power
and Energy

Double-click Analyze Power and
Energy to open a live script. Run the
script to evaluate and report power and
energy consumption at the component-
and system-level. For more information
about the live script, see “Analyze
Power and Energy” on page 3-117.

NA

Drive Cycle
Source block —
FTP75 (2474
seconds)

Generates a standard or user-specified
drive cycle velocity versus time profile.
Block output is the selected or
specified vehicle longitudinal speed.

✓

Environment
subsystem

Creates environment variables,
including road grade, wind velocity,
and atmospheric temperature and
pressure.

 

Longitudinal
Driver
subsystem

Uses the Longitudinal Driver or Open
Loop variant to generate normalized
acceleration and braking commands.

• Longitudinal Driver variant
implements a driver model that uses
vehicle target and reference
velocities.

• Open Loop variant allows you to
configure the acceleration,
deceleration, gear, and clutch
commands with constant or signal-
based inputs.

✓

Controllers
subsystem

Implements a powertrain control
module (PCM) containing a P4 hybrid
control module (HCM), an engine
control module (ECM), and a
transmission control module (TCM).

✓
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Reference
Application
Element

Description Variants

Passenger Car
subsystem

Implements a hybrid passenger car
that contains drivetrain, electric plant,
and engine subsystems.

To model the drivetrain, use the Toggle
To Simscape Drivetrain button to
switch between Simscape and
Powertrain Blockset variants of the
drivetrain subsystem. By default, the
reference application uses the
Powertrain Blockset variant. The
Simscape variant incorporates physical
connections to provide a flexible way to
assemble components.

✓

Visualization
subsystem

Displays vehicle-level performance,
battery state of charge (SOC), fuel
economy, and emission results that are
useful for powertrain matching and
component selection analysis.

 

Evaluate and Report Power and Energy
Double-click Analyze Power and Energy to open a live script. Run the script to evaluate and report
power and energy consumption at the component- and system-level. For more information about the
live script, see “Analyze Power and Energy” on page 3-117.

The script provides:

• An overall energy summary that you can export to an Excel spreadsheet.
• Engine plant, electric plant, and drivetrain plant efficiencies, including an engine histogram of

time spent at the different engine plant efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency and energy transfer signals.

Drive Cycle Source
The Drive Cycle Source block generates a target vehicle velocity for a selected or specified drive
cycle. The reference application has these options.

Timing Variant Description
Output sample
time

Continuous (default) Continuous operator commands
Discrete Discrete operator commands
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Longitudinal Driver
The Longitudinal Driver subsystem generates normalized acceleration and braking commands.
The reference application has these variants.

Block Variants Description
Longitudinal
Driver
(default)

Control Mapped PI control with tracking windup and feed-forward gains
that are a function of vehicle velocity.

Predictive Optimal single-point preview (look ahead) control.
Scalar Proportional-integral (PI) control with tracking windup

and feed-forward gains.
Low-
pass
filter
(LPF)

LPF Use an LPF on target velocity error for smoother driving.
pass Do not use a filter on velocity error.

Shift Basic Stateflow chart models reverse, neutral, and drive gear
shift scheduling.

External Input gear, vehicle state, and velocity feedback generates
acceleration and braking commands to track forward and
reverse vehicle motion.

None No transmission.
Scheduled Stateflow chart models reverse, neutral, park, and N-

speed gear shift scheduling.
Open Loop Open-loop control subsystem. In the subsystem, you can

configure the acceleration, deceleration, gear, and clutch
commands with constant or signal-based inputs.

To idle the engine at the beginning of a drive cycle and simulate catalyst light-off before moving the
vehicle with a pedal command, use the Longitudinal Driver variant. The Longitudinal Driver
subsystem includes an ignition switch signal profile, IgSw. The engine controller uses the ignition
switch signal to start both the engine and a catalyst light-off timer.

The catalyst light-off timer overrides the engine stop-start (ESS) stop function control while the
catalyst light-off timer is counting up. During the simulation, after the IgSw down-edge time reaches
the catalyst light-off time CatLightOffTime, normal ESS operation resumes. If there is no torque
command before the simulation reaches the EngStopTime, the ESS shuts down the engine.

To control ESS and catalyst light-off:

• In the Longitudinal Driver Model subsystem, set the ignition switch profile IgSw to 'on'.
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• In the engine controller model workspace, set these calibration parameters:

• EngStopStartEnable — Enables ESS. To disable ESS, set the value to false.
• CatLightOffTime — Engine idle time from engine start to catalyst light-off.
• EngStopTime — ESS engine run time after driver model torque request cut-off.

Controllers
The Controller subsystem has a PCM containing an ECM, HCM, and TCM. The controller has these
variants.

Controller Variant Description
ECM SiEngineController

(default)
Implements the SI Controller

CiEngineController Implements the CI Controller
HCM ECMS Implements the Equivalent Consumption

Minimization Strategy
TCM TransmissionController Implements the transmission controller

Passenger Car
To implement a passenger car, the Passenger Car subsystem contains drivetrain, electric plant, and
engine subsystems. To create your own engine variants for the reference application, use the CI and
SI engine project templates. The reference application has these variants.

Drivetrain

To model the drivetrain, use the Toggle To Simscape Drivetrain button to switch between
Simscape and Powertrain Blockset variants of the drivetrain subsystem. By default, the reference
application uses the Powertrain Blockset variant. The Simscape variant incorporates physical
connections to provide a flexible way to assemble components.

Tip The reference application sets the appropriate solvers to optimize performance for each engine
and drivetrain combination. Select the engine variant first, then select the drivetrain using the toggle
button. If you select the drivetrain before changing the engine, you may encounter a solver error.
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Drivetrain
Subsystem

Variant Description

Differential and
Compliance

Limited Slip
Differential

You can vary the type of coupling torque and
efficiency. By default, the differential is configured
with an ideal wet clutch and constant efficiency.

Open Differential You can vary the type of differential efficiency. By
default, the open differential is configured with a
constant efficiency

Torque
Converter
Automatic
Transmission

Ideal Fixed Gear
Transmission

Configure locked and unlocked transmission
efficiency with either a 1D or 4D (default) lookup
table.

Torque Converter Configure for external, internal (default), or no
lockup.

Vehicle Vehicle Body 1 DOF
Longitudinal

Configured for 1 degrees of freedom

Wheels and
Brakes

Longitudinal Wheel -
Front 1

For the wheels, you can configure the type of:

• Brake
• Force calculation
• Resistance calculation
• Vertical motion

For performance and clarity, to determine the
longitudinal force of each wheel, the variants
implement the Longitudinal Wheel block. To
determine the total longitudinal force of all wheels
acting on the axle, the variants use a scale factor to
multiply the force of one wheel by the number of
wheels on the axle. By using this approach to
calculate the total force, the variants assume equal
tire slip and loading at the front and rear axles,
which is common for longitudinal powertrain
studies. If this is not the case, for example when
friction or loads differ on the left and right sides of
the axles, use unique Longitudinal Wheel blocks to
calculate independent forces. However, using unique
blocks to model each wheel increases model
complexity and computational cost.

Longitudinal Wheel -
Rear 1

Electric Plant

Electric Plant
Subsystem

Variant Description

Battery BattHevP4 Configured with Lithium Ion battery
Electric Machine MotMapped Mapped Motor with implicit controller
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Engine

Engine
Subsystem

Variant Description

Engine SiEngineCore Dynamic SI Core Engine with turbocharger
SiMappedEngine (default) Mapped SI Engine with implicit turbocharger
SiEngineCoreNA Dynamic naturally aspirated SI Core Engine

Limitations
MathWorks used the SI Core Engine and SI Controller to calibrate the hybrid control module (HCM).
If you use the CI Core Engine and CI Controller variants, the simulation may error because the HCM
does not use calibrated results.

Acknowledgment
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Resources Engineering at Stanford University. Her research interests include electrochemical
modeling, estimation and optimization of energy storage devices for automotive and grid-level
applications, hybrid and electric vehicles modeling and control, PDE modeling, and model-order
reduction and estimation of emission mitigation systems. She is a senior member of IEEE.
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See Also
Drive Cycle Source | Longitudinal Driver | Mapped SI Engine | SI Core Engine | SI Controller |
Mapped CI Engine | CI Core Engine | CI Controller | Mapped Motor

Related Examples
• “HEV P4 Reference Application” on page 7-9

More About
• “Analyze Power and Energy” on page 3-117
• “Hybrid and Electric Vehicle Reference Application Projects” on page 3-3
• “Variant Systems”
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Explore the Motor Dynamometer Reference Application
The motor dynamometer reference application represents a motor plant and controller connected to
an AC dynamometer. Using the reference application, you can design and test traction e-motors and
controllers for your electrified powertrain vehicle. To create and open a working copy of the motor
dynamometer reference application project, use this command.

autoblkMotDynamometerStart

By default, the reference application is configured with an 80 kW Flux-Based PMSM motor.

You can configure the reference application project for different dynamometer control modes. To
implement the operating modes, the reference application uses variant subsystems.

This table summarizes the dynamometer tests.

Test Objective Method Motor Variant
Mapped Dynamic

PMSM
Flux-
Based
PMSM

Resize Mapped
Motor Model

Match motor torque
to desired maximum
power, torque, DC
link voltage, and
constant power
speed ratio (CPSR).

Dynamometer resizes the
mapped motor and motor
calibration parameters.

For more details, see
“Resize the Motor” on page
3-86.

✓   

Resize
Dynamic
PMSM and
Recalibrate
Controller

Match motor torque
to desired maximum
power level and DC
link voltage.

Dynamometer resizes the
dynamic PMSM motor and
motor calibration
parameters. The
dynamometer also
recalibrates the controller.

For more details, see
“Resize the Motor” on page
3-86.

 ✓  

Resize Flux-
based PMSM
and
Recalibrate
Controller

Match motor torque
to desired maximum
power level and DC
link voltage.

Dynamometer resizes the
flux-based PMSM motor and
motor calibration
parameters. The
dynamometer also
recalibrates the controller.

For more details, see
“Resize the Motor” on page
3-86.

  ✓
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Test Objective Method Motor Variant
Mapped Dynamic

PMSM
Flux-
Based
PMSM

Run
Performance
Tests

Run dynamic and
steady-state
performance tests
at different
operating points of
torque and speed.

Dynamometer controller
commands a series of motor
speeds and torques to the
motor controller. At each
quasi-steady-state operating
point, the experiment
records the motor plant
model output and the
controller commands for the
current calibration
parameters.

✓ ✓ ✓

Motor System
The reference application includes variant subsystems for Mapped (steady-state), Dynamic PMSM,
and Flux-Based PMSM motors.

Objective Motor Variant
Simulate and validate motor system response
based on high-level specifications.

Mapped

Simulate and validate linear dynamic models
based on existing motor details.

Dynamic PMSM

Simulate and validate nonlinear dynamic models
based on existing motor details.

Flux-Based PMSM

Performance Monitor
The reference application contains a Performance Monitor block that you can use to plot steady-state
and dynamic results. You can plot:

• Steady-state results as a function of one or two variables.
• Dynamic results using the Simulation Data Inspector.

See Also
Mapped Motor | Interior PM Controller | Interior PMSM | Flux-Based PM Controller | Flux-Based
PMSM

Related Examples
• “Motor Dynamometer Reference Application” on page 7-14
• “Resize the Motor” on page 3-86
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More About
• “Variant Systems”
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Resize the Motor
By default, the motor dynamometer reference application motor is configured with an 80 kW Flux-
Based PMSM motor. Based on desired specifications, you can resize the motor variant for different
vehicle applications.

These motor variants are available.

Motor
Subsystem

Variant Description

Motor &
Inverter Plant

Mapped Simulate and validate motor system response based
on high-level specifications.

Dynamic PMSM Simulate and validate linear dynamic models based
on existing motor details.

Flux-Based PMSM (default) Simulate and validate nonlinear dynamic models
based on existing motor details.

To set the variant and resize the motor, use the dynamometer reference application. After you open
the reference application, click one of the Resize buttons:

• For a mapped motor, click Resize Mapped Motor Model. Then, set the desired maximum power,
torque, DC link voltage and constant power speed ratio (CPSR).

• For a dynamic motor, click Resize Dynamic PMSM and Recalibrate Controller. Then, set the
desired maximum power level, DC link voltage, and axial resize factor.

• For a flux-based motor, click Resize Flux-based PMSM and Recalibrate Controller. Then, set
the desired maximum power level, DC link voltage, and axial resize factor.

Click Resize Motor and Apply to resize the motor with your desired specifications. The reference
application:

• Resizes the motor and motor calibration parameters
• Recalibrates the controller to match the resized motor
• Saves the motor and controller parameters to the model

Click Plot Characteristics to view characteristics of the new motor.

You can use the variants in other applications, for example, in vehicle projects that require a motor
model.

See Also
Mapped Motor | Interior PM Controller | Interior PMSM | Flux-Based PM Controller | Flux-Based
PMSM

More About
• “Explore the Motor Dynamometer Reference Application” on page 3-83
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Resize the CI Engine
By default, the compression-ignition (CI) engine dynamometer reference application engine is
configured with a dynamic 1.5-L turbocharged diesel engine. Based on a desired number of cylinders
and maximum engine power or engine displacement, you can resize the dynamic engine (CiEngine)
for different vehicle applications.

To resize the engine, use the dynamometer reference application. After you open the reference
application, click Resize Engine and Recalibrate Controller. In the dialog box, set Power or
displacement to either:

• Power – Enter a Desired maximum power value
• Displacement – Enter a Desired displacement value

For either power or displacement, enter a Desired number of cylinders value.

After you apply the changes, the reference application:

• Resizes the dynamic engine and engine calibration parameters. The Resize Engine and
Recalibrate Controller block mask provides the updated engine performance characteristics
based on the resized calibration parameters.

• Recalibrates the controller and mapped engine model to match the resized dynamic engine.

You can use the variants in other applications, for example, in vehicle projects that require a larger
engine model.

Create CI Engine Models with Twice the Power
1 If it is not already open, open a copy of the CI engine reference application project by entering

autoblkCIDynamometerStart 
2 In the CiDynoReferenceApplication model window, click Recalibrate Controller.

The reference application performs a dynamometer test to calibrate the engine controller for the
default 1.5-L turbocharged diesel engine. For engine speeds 2000–5000 rpm, the measured
engine torque approaches 240 N·m. The steady-state results for measured engine torque as a
function of torque command and engine speed are similar to this plot.
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3 In the CiDynoReferenceApplication model window, click Resize Engine and Recalibrate
Controller.

The dialog box opens with default values for Desired maximum power and Desired number of
cylinders. These values represent the calibration parameters for the default 1.5-L dynamic
engine.

The dialog box provides the calibration parameters for the current engine design. The
parameters are similar to these.
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4 In the Resize Engine and Recalibrate Controller dialog box, enter values that represent
approximately twice the maximum power and number of cylinders. For example, set:

• Desired maximum power to 220.
• Desired number of cylinders to 8.

Click Resize Engine. The reference application:

• Resizes the dynamic engine (CiEngineCore) and engine calibration parameters. The dialog
box provides the updated engine performance characteristics based on the resized calibration
parameters.
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• Recalibrates the controller (CiEngineController) and mapped engine model
(CiMappedEngine) to match the resized dynamic engine (CiEngineCore).

After resizing and recalibration, the dialog box provides the calibration parameters for the
resized engine. The parameters are similar to these.

5 Examine the dynamometer steady-state results. For engine speeds 2000–5000 rpm, the measured
engine torque approaches 500 N·m. This result is approximately twice the power of the default
dynamic engine. The steady-state results for measured engine torque as a function of torque
command and engine speed are similar to this plot.
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6 To save the engine controller, resized engine mapped variant, and resized dynamic engine
variant, in the CiDynoReferenceApplication model window, save the reference application.

By default, this process creates:

• An updated CI engine controller
• Two engine variants — mapped and dynamic

To see the parameters associated with the controller and engine variants:

1 In MATLAB, use the Project Shortcuts tab to open these models:

• CiEngineController
• CiEngineCore
• CiMappedEngine
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2 Use the Model Explorer to view the resized parameters:

Engine Model Model Explorer
Controller —
CiEngineCont
roller

Mapped —
CiMappedEngi
ne

Dynamic —
CiEngineCore
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3 In the CiDynoReferencApplication > Engine System > Engine Plant > Engine >
CIMappedEngine subsystem, open the Mapped CI Engine block. On the Power tab, plot the
actual torque as a function of engine speed and commanded fuel.

See Also
CI Core Engine | Mapped CI Engine

More About
• “Explore the CI Engine Dynamometer Reference Application” on page 3-10
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Resize the SI Engine
By default, the spark-ignition (SI) engine dynamometer reference application engine is configured
with a turbocharged 1.5-L dynamic gasoline engine. Based on a desired number of cylinders and
maximum engine power or engine displacement, you can resize the dynamic engine variant for
different vehicle applications.

To resize the engine, use the dynamometer reference application. After you open the reference
application, click Resize Engine and Recalibrate Controller. In the dialog box, set Resize option
to either:

• Power – Enter a Desired maximum power value.
• Displacement – Enter a Desired displacement value.

For either power or displacement, enter a Desired number of cylinders value.

When in Displacement mode, you can define the maximum torque and the engine speed at which
maximum torque occurs. Click the checkboxes to enable these entry fields.

You can choose the architecture, air path configuration (turbocharged or naturally aspirated), and
presence or absence of cooled exhaust gas re-circulation (EGR) of your engine model. After making
your selections, click Resize Engine to set the engine variant.

The available engine variants are:

Engine
Subsystem

Variant Description

Engine SiEngineCore (default) Dynamic Inline Turbo SI Core Engine
SiEngineCoreNA Dynamic SI Inline Naturally Aspirated Engine
SiEngineCoreV Dynamic SI V Twin-Turbo Single-Intake Engine
SiEngineCoreVNA Dynamic SI V Naturally Aspirated Engine
SiEngineCoreVThr2 Dynamic SI V Twin-Turbo Twin-Intake Engine

After you apply the changes, the reference application:

• Resizes the dynamic engine and engine calibration parameters. The Resize Engine and
Recalibrate Controller block mask provides the updated engine performance characteristics
based on the resized calibration parameters.

• Recalibrates the controller and mapped engine model to match the resized dynamic engine.

You can use the variants in other applications, for example, in vehicle projects that require a larger
engine model.

Create SI Engine Models with Twice the Power
1 If it is not already open, open a copy of the SI engine reference application project by entering

autoblkSIDynamometerStart 
2 In the SiDynoReferenceApplication model window, click Recalibrate Controller.

The reference application performs a dynamometer test to calibrate the engine controller for the
default 1.5-L dynamic engine. For engine speeds 2000–5000 rpm, the measured engine torque
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approaches 180 N·m. The steady-state results for measured engine torque as a function of torque
command and engine speed are similar to this plot.

3 In the SiDynoReferenceApplication model window, click Resize Engine and Recalibrate
Controller.

The dialog box opens with default values for Desired maximum power and Desired number of
cylinders. These values represent the calibration parameters for the default 1.5-L dynamic
engine.

The dialog box provides the calibration parameters for the current engine design. The
parameters are similar to these.
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4 In the Resize Engine and Recalibrate Controller dialog box, enter values that represent
approximately twice the maximum power and number of cylinders. For example, set:

• Desired maximum power to 230.
• Desired number of cylinders to 8.

Click Resize Engine. The reference application:

• Resizes the dynamic engine (SiEngineCore) and engine calibration parameters. The
Recalibrate Engine dialog box provides the updated engine performance characteristics
based on the resized calibration parameters.
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• Recalibrates the controller (SiEngineController) and mapped engine model
(SiMappedEngine) to match the resized dynamic engine (SiEngineCore).

After resizing and recalibration, the dialog box provides the calibration parameters for the
resized engine. The parameters are similar to these.

5 Examine the dynamometer steady-state results. For engine speeds 2000–5000 rpm, the measured
engine torque approaches 400 N·m. This result is approximately twice the power of the default
dynamic engine. The steady-state results for measured engine torque as a function of torque
command and engine speed are similar to this plot.
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6 To save the engine controller, resized engine mapped variant, and resized dynamic engine
variant, in the SiDynoReferenceApplication model window, save the reference application.

By default, this process creates:

• An updated SI engine controller
• Two engine variants — mapped and dynamic

To see the parameters associated with the controller and engine variants:

1 In MATLAB, use the Project Shortcuts tab to open these models:

• SiEngineController
• SiEngineCore
• SiMappedEngine
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2 Use the Model Explorer to view the resized parameters:

Engine Model Model Explorer
Controller —
SiEngineCont
roller

Mapped —
SiMappedEngi
ne

Dynamic —
SiEngineCore
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3 In the SiDynoReferencApplication > Engine System > Engine Plant > Engine >
SIMappedEngine subsystem, open the Mapped SI Engine block. On the Power tab, plot the
actual torque as a function of engine speed and commanded torque.

See Also
SI Core Engine | Mapped SI Engine

More About
• “Explore the SI Engine Dynamometer Reference Application” on page 3-14
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Generate Mapped CI Engine from a Spreadsheet
If you have Model-Based Calibration Toolbox and Stateflow, you can use the engine dynamometer
reference application to generate lookup tables for the Mapped CI Engine block. The reference
application uses engine data to calibrate the engine and generate the tables.

1 If it is not opened, open the reference application.

autoblkCIDynamometerStart 
2 Click Generate Mapped Engine from Spreadsheet.

Step 1: Generate Mapped Engine Calibration
1 Use the Spreadsheet file field to provide a data file. By default, the reference application has

CiEngineData.xlsx containing required and optional data. The tables summarize the data file
requirements for generating calibrated tables that are functions of either injected fuel mass or
engine torque and engine speed.

Note To specify the lookup table type, in the Mapped CI Engine block, set the Input command
parameter to Fuel mass or Torque.

Firing data contains data collected at different engine torques and speeds.

Firing Data Description Data Requirements for Generating Mapped
Engine Tables
Function of Fuel Mass
and Engine Speed

Function of Torque
and Engine Speed

FuelMassCmd Injected fuel mass, in mg
per injection

Required Not used

Torque Engine torque command,
in N·m

Required Required

EngSpd Engine speed, in rpm Required Required
AirMassFlwRat
e

Air mass flow, in kg/s Optional Optional

FuelMassFlwR
ate

Fuel mass flow, in kg/s Optional Optional

ExhTemp Exhaust temperature, in
K

Optional Optional

BSFC Engine brake-specific
fuel consumption
(BSFC), in g/kWh

Optional Optional

HCMassFlwRat
e

Hydrocarbon emission
mass flow, in kg/s

Optional Optional

COMassFlwRat
e

Carbon monoxide
emission mass flow, in
kg/s

Optional Optional
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Firing Data Description Data Requirements for Generating Mapped
Engine Tables
Function of Fuel Mass
and Engine Speed

Function of Torque
and Engine Speed

NOxMassFlwR
ate

Nitric oxide and
nitrogen dioxide
emissions mass flow, in
kg/s

Optional Optional

CO2MassFlwR
ate

Carbon dioxide emission
mass flow, in kg/s

Optional Optional

PMMassFlwRat
e

Particulate matter
emission mass flow, in
kg/s

Optional Optional

Nonfiring data contains data collected at different engine speeds without fuel consumption.

Nonfiring Data Description Data Requirements for Generating Mapped
Engine Tables
Function of Fuel Mass
and Engine Speed

Function of Torque
and Engine Speed

FuelMassCmd Injected fuel mass, in
mg per injection

Not used Not used

Torque Engine torque
command, in N·m

Required Required

EngSpd Engine speed, in rpm Required Required
AirMassFlwRate Air mass flow, in kg/s Optional Optional

2 Click Generate mapped engine calibration to generate response surface models in the Model-
Based Calibration Toolbox and calibration in CAGE (CAlibration GEneration). CAGE and the
model browser open when the process completes. To calibrate the data, Model-Based Calibration
Toolbox uses templates.

• The Model Browser provides the response model fits for the data contained in the data file,
for example:
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• The CAGE Browser provides the calibrated data, for example:
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Step 2: Apply Calibration to Mapped Engine Model
When you click Apply calibration to mapped engine model, Powertrain Blockset:

• Updates the Mapped CI Engine block parameters with the calibrated table and breakpoint data.
• Updates the CI Controller with the fuel mass per injection table if the Mapped CI Engine block

tables are functions of fuel mass and engine speed.
• Sets the Mapped CI Engine as the active variant.
• Executes the engine mapping experiment.

When the dynamometer engine mapping completes, use the Simulation Data Inspector to verify the
results.

See Also
Mapped CI Engine | CI Core Engine | CI Controller

More About
• “Explore the CI Engine Dynamometer Reference Application” on page 3-10
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• “What Is CAGE?” (Model-Based Calibration Toolbox)
• “Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed” (Model-Based

Calibration Toolbox)
• “Mapped CI Lookup Tables as Functions of Engine Torque and Speed” (Model-Based Calibration

Toolbox)
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Generate Mapped SI Engine from a Spreadsheet
If you have Model-Based Calibration Toolbox and Stateflow, you can use the engine dynamometer
reference application to generate lookup tables for the Mapped SI Engine block. The reference
application uses engine data to calibrate the engine and generate the tables.

1 If it is not opened, open the reference application.

autoblkSIDynamometerStart 
2 Click Generate Mapped Engine from Spreadsheet.

Step 1: Generate Mapped Engine Calibration
1 Use the Spreadsheet file field to provide a data file. By default, the reference application has

SiEngineData.xlsx containing required and optional data. The tables summarize the data file
requirements for generating calibrated tables that are functions of either injected fuel mass or
engine torque and engine speed.

Firing data contains data collected at different engine torques and speeds.

Firing Data Description Data Requirements for
Generating Mapped Engine
Tables

FuelMassCmd Injected fuel mass, in mg per
injection

Not Used

Torque Engine torque command, in N·m Required
EngSpd Engine speed, in rpm Required
AirMassFlwRate Air mass flow, in kg/s Optional
FuelMassFlwRate Fuel mass flow, in kg/s Optional
ExhTemp Exhaust temperature, in K Optional
BSFC Engine brake-specific fuel

consumption (BSFC), in g/kWh
Optional

HCMassFlwRate Hydrocarbon emission mass flow,
in kg/s

Optional

COMassFlwRate Carbon monoxide emission mass
flow, in kg/s

Optional

NOxMassFlwRate Nitric oxide and nitrogen dioxide
emissions mass flow, in kg/s

Optional

CO2MassFlwRate Carbon dioxide emission mass
flow, in kg/s

Optional

PMMassFlwRate Particulate matter emission mass
flow, in kg/s

Optional

Nonfiring data contains data collected at different engine speeds without fuel consumption.
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Nonfiring Data Description Data Requirements for
Generating Mapped Engine
Tables

FuelMassCmd Injected fuel mass, in mg per
injection

Not used

Torque Engine torque command, in N·m Required
EngSpd Engine speed, in rpm Required
AirMassFlwRate Air mass flow, in kg/s Optional

2 Click Generate mapped engine calibration to generate response surface models in the Model-
Based Calibration Toolbox and calibration in CAGE (CAlibration GEneration). CAGE and the
model browser open when the process completes. To calibrate the data, Model-Based Calibration
Toolbox uses templates.

• The Model Browser provides the response model fits for the data contained in the data file,
for example:

• The CAGE Browser provides the calibrated data, for example:
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Step 2: Apply Calibration to Mapped Engine Model
When you click Apply calibration to mapped engine model, Powertrain Blockset:

• Updates the Mapped SI Engine block parameters with the calibrated table and breakpoint data.
• Sets the Mapped SI Engine as the active variant.
• Executes the engine mapping experiment.

When the dynamometer engine mapping completes, use the Simulation Data Inspector to verify the
results.

See Also
SI Core Engine | Mapped SI Engine

More About
• “Explore the SI Engine Dynamometer Reference Application” on page 3-14
• “What Is CAGE?” (Model-Based Calibration Toolbox)
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• “Mapped SI Lookup Tables as Functions of Engine Torque and Speed” (Model-Based Calibration
Toolbox)
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Generate a Deep Learning SI Engine Model
If you have the Deep Learning Toolbox and Statistics and Machine Learning Toolbox, you can
generate a dynamic deep learning spark-ignition (SI) engine model to use for powertrain control,
diagnostic, and estimator algorithm design. For example, fit a deep learning model to measured
engine-out transient emissions data and use it for aftertreatment control and diagnostic algorithm
development. The deep learning SI engine models the dynamic engine behavior from measured
laboratory data or a high-fidelity engine model.

To train the deep learning SI engine model, Powertrain Blockset uses this SI engine data.

Input Data Output Data
Engine speed

Commanded torque

Brake torque

Intake manifold gas pressure

Intake manifold gas temperature

Fuel flow

Intake air mass flow

Exhaust gas temperature at exhaust manifold inlet

Turbocharger speed

Engine out (EO) hydrocarbon (HC) emission mass flow

EO carbon monoxide (CO) emission mass flow

EO nitric oxide and nitrogen dioxide emissions (NOx) emission mass flow

EO carbon dioxide (CO2) emission mass flow

To generate the deep learning engine model, follow these steps.

1 If it is not already opened, open the reference application.

autoblkSIDynamometerStart 
2 Double-click Generate Deep Learning Engine Model. Generating the model can take several

hours.

By default, to train the deep learning engine model, the reference application generates design of
experiment (DoE) response data from the SI Core Engine block. Alternatively, you can use engine
data generated by Powertrain Blockset from Gamma Technologies LLC engine models or other
high-fidelity engine models.

• View the training progress window to see the iteration or stop the training.
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• As the training runs, Powertrain Blockset logs this data in the base workspace.

• EngineInputs — m-by-2 array of engine inputs
• EngineOutputs — m-by-11 array of engine outputs

Powertrain Blockset uses half the data to train the model and half to test the model.
3 After you generate the deep learning SI model, view the results.

• For each engine output, a plot displays the SI engine deep learning model (Pred) and the test
data (Test). For example, this plot shows the comparison for dynamic engine-out CO emissions
mass flow.
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• The Simulation Data Inspector displays the SI engine deep learning model speed, torque
commands, fuel mass flow rate, and shaft speed.
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4 You can use the deep learning SI model, SiDLEngine, as an engine plant model variant in the
conventional vehicle and hybrid electric vehicle (HEV) reference applications. For example, in
the conventional vehicle reference application, on the Modeling tab, in the Design section, open
the Variant Manager. Navigate to Passenger Car > Engine. Right-click to set SiDLEngine as the
active choice.
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5 To fit your own deep learning SI engine model or adjust the deep learning training settings, use
the FitSiEngineLSTM.m script in the reference application project folder.

See Also
SI Core Engine | Mapped SI Engine

More About
• “Explore the SI Engine Dynamometer Reference Application” on page 3-14
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• “Deep Learning Toolbox”
• “Statistics and Machine Learning Toolbox”
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Internal Combustion Mapped and Dynamic Engine Models
When you customize a SI or CI reference application, you can use either a dynamic or mapped engine
model. The table provides considerations for using either implementation.

Type Implementation When to Use
Mapped CiMappedEngin

e

SiMappedEngin
e

Model uses a set of steady-state
lookup tables to characterize
engine performance.

The tables provide overall engine
characteristics, including actual
torque, fuel flow rate, BSFC, and
engine-out exhaust emissions.

• If you have engine data from
a dynamometer or a design
tool like GT-POWER.

• For quasi steady-state engine
simulations.

Dynamic CiEngine

SiEngine

Model decomposes the engine
behavior into engine
characteristics that are separated
into lower-level components. By
combining components in this
way, the models capture the
dynamic effects.

• If you need a more detailed
dynamic model and have
component-level data.

• To analyze the impact of
individual engine components
on the overall performance.

See Also

More About
• Mapped CI Engine
• Mapped SI Engine
• CI Core Engine
• SI Core Engine
• “Engine Calibration Maps” on page 2-31
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Analyze Power and Energy
To assess powertrain efficiency, you can evaluate and report power and energy for component-level
blocks and system-level reference applications.

These reference applications include live scripts that analyze the energy consumption. After you open
the reference applications, double-click Analyze Power and Energy to open the live script. To
generate the energy report, select Run.

• “Explore the Conventional Vehicle Reference Application” on page 3-4
• “Explore the Hybrid Electric Vehicle Multimode Reference Application” on page 3-18
• “Explore the Hybrid Electric Vehicle Input Power-Split Reference Application” on page 3-36
• “Explore the Hybrid Electric Vehicle P0 Reference Application” on page 3-45
• “Explore the Hybrid Electric Vehicle P1 Reference Application” on page 3-52
• “Explore the Hybrid Electric Vehicle P2 Reference Application” on page 3-59
• “Explore the Hybrid Electric Vehicle P3 Reference Application” on page 3-69
• “Explore the Hybrid Electric Vehicle P4 Reference Application” on page 3-76
• “Explore the Electric Vehicle Reference Application” on page 3-25

The plant model blocks calculate transferred, stored, and not transferred power. The blocks use the
Power Accounting Bus Creator to log the power signals that the live script uses. If you use your own
block in the reference application, add the Power Accounting Bus Creator to your subsystem to log
the power signals.

The live script provides:

• An overall energy summary that the script exports to an Excel spreadsheet.
• Engine plant, electric plant, and drivetrain efficiencies, including an engine plant histogram of

time spent at different efficiencies.
• Data logging so that you can use the Simulation Data Inspector to analyze the powertrain
efficiency, power, and energy signals.

Live Script
The live script uses the autoblks.pwr.PlantInfo class to turn on data logging, run the simulation,
and report power and energy results. Before running the simulation, the script finds all of the Power
Accounting Bus Creator blocks in the model and turns on data logging. During the simulation, the
model logs the transferred, not transferred, and stored power. The script uses the logged data to
calculate efficiency, energy loss, energy input, and energy output for each component and subsystem.
If the component does not conserve energy, the script issues warnings. Finally, the script provides an
overall vehicle energy summary, a detailed subsystem summary, and Simulation Data Inspector time
series plots.

Run Simulation

When you run the simulation, the script creates the autoblks.pwr.PlantInfo object to analyze
the model energy and power consumption. Use these properties to set the units:

• PwrUnits
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• EnrgyUnits

When the script creates the autoblks.pwr.PlantInfo object, the constructor searches the model
for Power Accounting Bus Creator blocks. Starting at the top-level model, the constructor creates a
child object for each subsystem that contains Power Accounting Bus Creator blocks. The constructor
stops at the blocks that have a Power Accounting Bus Creator.

To track the power transferred between the components, the constructor uses the transferred power
ports defined in the Power Accounting Bus Creator block mask.

To calculate the efficiency, the autoblks.pwr.PlantInfo class Eff property implements this
equation.

η =
∑Poutput −∑ Pstore Pstore > 0

∑ Pinput −∑ Pstore Pstore < 0

To determine if the system conserves energy, the isEnrgyBalanced method checks the energy
conservation at each time step. If the energy conservation error is within an error tolerance, the
method returns true.

Overall Summary

The overall summary provides the efficiency, energy loss, energy input, energy output, and energy
stored at the component- and system-level. The summary includes hyperlinks that you can use to
investigate model blocks and subsystems.

The script uses the autoblks.pwr.PlantInfo class xlsSysSummary method to export the analysis
to an Excel spreadsheet.

Plant Summary

The script provides engine plant, electric plant, and drivetrain efficiencies. Specifically, the script
includes the signal energy, and an engine efficiency histogram.

Simulation Data Inspector Summary

The script includes the autoblks.pwr.PlantInfo class sdiSummary method to create Simulation
Data Inspector power, energy, and efficiency signal plots.

Power Signals
The system-level power and energy accounting tests that the system satisfies the conservation of
energy. If the component does not conserve energy, the live script issues warnings.

The Power Accounting Bus Creator for the plant blocks in the reference applications sort the signals
into three power types.
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Power Type Description Examples
Ptrans Transferred Power transferred between

blocks:

• Positive signals indicate flow
into block

• Negative signals indicate flow
out of block

• Crankshaft power transferred from
mapped engine to transmission.

• Road load power transferred from
wheel to vehicle.

• Rate of heat flow transferred from
throttle to manifold volume.

Pnottrans Not
transferred

Power crossing the block
boundary, but not transferred:

• Positive signals indicate an
input

• Negative signals indicate a
loss

• Rate of heat transfer with the
environment.

• From environment is an input
(positive signal)

• To environment is a loss (negative
signal)

• Flow boundary with the environment.

• From environment is an input
(positive signal)

• To environment is a loss (negative
signal)

• Mapped engine fuel flow.
Pstore Stored Stored energy rate of change:

• Positive signals indicate an
increase

• Negative signals indicate a
decrease

Energy rate of change:

• Battery storage
• Kinetic energy in drivetrain

components
• Vehicle potential energy
• Vehicle velocity

The power signals satisfy this equation.

∑ Ptrans +∑ Pnottrans =∑ Pstore

To conserve energy, sum of transferred power signals must be near zero.

The equations use these variables.

Ptrans Transferred power
Pnottrans Not transferred power
Pstore Stored power
Pinput, Poutput Input and output power logged by Power Accounting Bus

Creator block

See Also
Power Accounting Bus Creator | autoblks.pwr.PlantInfo
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Related Examples
• “Conventional Vehicle Powertrain Efficiency” on page 1-15

More About
• Simulation Data Inspector
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Generate Mapped Fuel Cell from a Spreadsheet
If you have Model-Based Calibration Toolbox and Stateflow, you can use the fuel cell electric vehicle
reference application to generate lookup tables for the Mapped Fuel Cell block. The reference
application uses fuel cell data to calibrate the fuel cell and generate the tables.

1 If it is not opened, open the reference application.

autoblkFCEvStart 
2 Click Generate Mapped Fuel Cell from Spreadsheet.

Step 1: Generate Mapped Fuel Cell Calibration
1 Use the Spreadsheet file field to provide a data file. By default, the reference application has

FuelCellPerformanceData.xlsx containing required and optional data. The tables
summarize the data file requirements for generating calibrated tables that are functions of either
injected fuel mass or engine torque and engine speed.

Firing data contains data collected at different engine torques and speeds.

Firing Data Description Data Requirements for
Generating Mapped Fuel Cell
Tables

FuelMassCmd Injected fuel mass, in mg per
injection

Not Used

Torque Engine torque command, in N·m Required
EngSpd Engine speed, in rpm Required
AirMassFlwRate Air mass flow, in kg/s Optional
FuelMassFlwRate Fuel mass flow, in kg/s Optional
ExhTemp Exhaust temperature, in K Optional
BSFC Engine brake-specific fuel

consumption (BSFC), in g/kWh
Optional

HCMassFlwRate Hydrocarbon emission mass flow,
in kg/s

Optional

COMassFlwRate Carbon monoxide emission mass
flow, in kg/s

Optional

NOxMassFlwRate Nitric oxide and nitrogen dioxide
emissions mass flow, in kg/s

Optional

CO2MassFlwRate Carbon dioxide emission mass
flow, in kg/s

Optional

PMMassFlwRate Particulate matter emission mass
flow, in kg/s

Optional

Nonfiring data contains data collected at different engine speeds without fuel consumption.
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Nonfiring Data Description Data Requirements for
Generating Mapped Fuel Cell
Tables

FuelMassCmd Injected fuel mass, in mg per
injection

Not used

Torque Engine torque command, in N·m Required
EngSpd Engine speed, in rpm Required
AirMassFlwRate Air mass flow, in kg/s Optional

2 Click Generate mapped fuel cell calibration to generate response surface models in the
Model-Based Calibration Toolbox and calibration in CAGE (CAlibration GEneration). CAGE and
the model browser open when the process completes. To calibrate the data, Model-Based
Calibration Toolbox uses templates.

• The Model Browser provides the response model fits for the data contained in the data file,
for example:

• The CAGE Browser provides the calibrated data, for example:
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Step 2: Apply Calibration to Mapped Fuel Cell Model
When you click Apply calibration to mapped fuel cell model, Powertrain Blockset:

• Updates the Mapped Fuel Cell block parameters with the calibrated table and breakpoint data.
• Sets the Mapped Fuel Cell as the active variant.
• Executes the fuel cell mapping experiment.

When the reference application fuel cell mapping completes, use the Simulation Data Inspector to
verify the results.

See Also
SI Core Engine | Mapped SI Engine

More About
• “Explore the Fuel Cell Electric Vehicle Reference Application” on page 3-31
• “What Is CAGE?” (Model-Based Calibration Toolbox)

 Generate Mapped Fuel Cell from a Spreadsheet

3-123



• “Mapped SI Lookup Tables as Functions of Engine Torque and Speed” (Model-Based Calibration
Toolbox)
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CI Engine Project Template
The Powertrain Blockset software provides a project template for compression-ignition (CI) engines.
Use the template to create engine variants that you can use with the internal combustion engine
reference application projects. The project template contains CI engine controller and plant models.

Use the project template to create CI engine variants for these reference applications:

• Conventional vehicle
• Hybrid electric vehicles
• CI engine dynamometer

To open the CI engine project template:

1 In Simulink, on the Simulation tab, select New > Project > New Project.

In the Simulink start page, browse to Powertrain Blockset and select CI Engine Project.
2 In the Create Project dialog box, in Project name, enter a project name.
3 In Folder, enter a project folder or browse to the folder to save the project.
4 Click OK.

If the folder does not exist, the dialog box prompts you to create it. Click Yes.

The software compiles the project and populates the project folders. All models and supporting
files are in place for you to customize your CI or SI engine model.

Controller
The Controller folder contains the CiEngineController.slx model. The model uses the CI
Controller block and a Start Stop Logic subsystem to control the CI engine plant model.

Plant
The Plant folder contains models that represent dynamic and mapped CI engines. By default, the
dynamic and mapped engines are configured for a 1.5–L engine with a variable geometry
turbocharger (VGT).

Dynamic

CiEngineCore.slx contains the engine intake system, exhaust system, exhaust gas recirculation
(EGR), fuel system, core engine, and turbocharger subsystems.
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Mapped

CiMappedEngine.slx uses the Mapped CI Engine block to look up power, air mass flow, fuel flow,
exhaust temperature, efficiency, and emission performance as functions of engine speed and injected
fuel mass.

See Also
Mapped CI Engine | CI Core Engine | CI Controller

More About
• “Internal Combustion Engine Reference Application Projects” on page 3-2
• Simulink Projects
• “Variant Systems”
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SI Engine Project Template
The Powertrain Blockset software provides a project template for spark-ignition (SI) engines. Use the
template to create engine variants that you can use with the internal combustion engine reference
application projects. The project template contains SI engine controller and plant models.

Use the project template to create CI engine variants for these reference applications:

• Conventional vehicle
• Hybrid electric vehicles
• SI engine dynamometer

To open the SI engine project template:

1 In Simulink, on the Simulation tab, select New > Project > New Project.

In the Simulink start page, browse to Powertrain Blockset and select SI Engine Project.
2 In the Create Project dialog box, in Project name, enter a project name.
3 In Folder, enter a project folder or browse to the folder to save the project.
4 Click OK.

If the folder does not exist, the dialog box prompts you to create it. Click Yes.

The software compiles the project and populates the project folders. All models and supporting
files are in place for you to customize your CI or SI engine model.

Controller
The Controller folder contains the SiEngineController.slx model. The model uses the SI
Controller block and a Start Stop Logic subsystem to control the SI engine plant model.

Plant
The Plant folder contains models that represent dynamic and mapped SI engines. By default, the
dynamic and mapped engines are configured for a 1.5–L turbocharged engine.

Dynamic

SiEngineCore.slx contains the engine intake system, exhaust system, core engine, and
turbocharger subsystems.
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Mapped

SiMappedEngine.slx uses the Mapped SI Engine block to look up power, air mass flow, fuel flow,
exhaust temperature, efficiency, and emission performance as functions of engine speed and
commanded torque.

See Also
SI Core Engine | Mapped SI Engine | SI Controller

More About
• “Internal Combustion Engine Reference Application Projects” on page 3-2
• Simulink Projects
• “Variant Systems”
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Install Drive Cycle Data
This example shows how to install additional drive cycle data for the Drive Cycle Source block. By
default, the block has the FTP-75 drive cycle data. The support package has drive cycles that include
the gear shift schedules, for example JC08 and CUEDC.

1 In the Drive Cycle Source block, click Install additional drive cycles to start the installer.
2 Follow the instructions and default settings provided by the installer to complete the installation.
3 On the Select a support package screen, select the data you want to add:

Accept or change the Installation folder and click Next.

Note You must have write privileges for the Installation folder.

See Also
Drive Cycle Source

More About
• “Track Drive Cycle Errors” on page 5-3
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Track Drive Cycle Errors
This example shows how to use the Drive Cycle Source block to identify drive cycle faults when you
run the conventional vehicle reference application with the FTP–75 drive cycle.

1 Open the conventional vehicle reference application project. By default, the application has a
FTP–75 drive cycle with error tracking disabled.

autoblkConVehStart 

Project files open in a writable location.
2 Open the Drive Cycle Source block. On the Fault Tracking tab, select these parameters:

• Enable fault tracking
• Enable failure tracking

3 Review the parameters that specify the fault and failure conditions. If the vehicle speed is not
within the allowable speed range during the time tolerance, the block sets a fault condition.
Accept the default EPA dynamometer driving schedule parameter settings by clicking OK.

This table provides the settings for the EPA standard and the Worldwide Harmonised Light
Vehicle Test Procedure (WLTP) laboratory tests.

Parameter Description Setting
EPA Standard1 WLTP Tests2

Speed tolerance Speed tolerance
above the highest
point and below the
lowest point of the
drive cycle speed
trace within the
time tolerance.

2.0 mph 2.0 km/h

Time tolerance Time that the block
uses to determine
the speed tolerance.

1.0 s 1.0 s

Maximum number of
faults

Maximum number
of faults during the
drive cycle.

Not specified 10

Maximum single fault
time

Maximum fault
duration.

2.0 s 1.0 s

Maximum total fault
time

Maximum
accumulated time
spent under fault
condition.

Not specified Not specified

4 Connect the vehicle longitudinal velocity signal to the Drive Cycle Source block VelFdbk input
port.

a In the Visualization subsystem, connect the longitudinal velocity signal, <xdot>, to an
Outport named xdot_output.

b Determine the <xdot> signal units. To display signal units, on the Debug tab, select
Information Overlays > Units. The <xdot> signal units are m/s.

 Track Drive Cycle Errors

5-3

matlab:autoblkConVehStart


c Select the <xdot> signal line and Enable Data Logging.

d On the top level of the model, connect the Visualization output to the Drive Cycle Source
block input.

5 Connect the Drive Cycle Source block Info output port to a Terminator port. Enable data
logging.

6 Save the model and run the simulation.
7 To inspect the results, use the Data Inspector. In the Simulink Toolstrip, on the Simulation tab,

under Review Results, click Data Inspector.

These results indicate that the Drive Cycle Source block did not detect faults or failures during
the drive cycle.

• Fault — Vehicle speed, <xdot>, stayed within the upper and lower bounds of the allowable
speed range.
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• Fail — Fault conditions did not exceed the maximum number of faults, maximum single fault
time, or maximum total fault time.
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8 In the Drive Cycle Source block, set the Speed tolerance parameter to a tighter tolerance, for
example 1 mph. The block calculates new error bounds for the speed.

9 Rerun the simulation.
10 To inspect the results, use the Data Inspector. These results indicate that the Drive Cycle Source

block did detect failures and faults during the drive cycle.

• Fault — Vehicle speed, <xdot>, did not stay within the upper and lower bounds of the
allowable speed range.

• Fail — Fault conditions exceeded the maximum number of faults, maximum single fault time,
or maximum total fault time.
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References
[1] Environmental Protection Agency (EPA). EPA urban dynamometer driving schedule. 40 CFR

86.115-78, July 1, 2001.

[2] European Union Commission. "Speed trace tolerances". European Union Commission Regulation.
32017R1151, Sec 1.2.6.6, June 1, 2017.

See Also
Drive Cycle Source

More About
• “Explore the Conventional Vehicle Reference Application” on page 3-4
• “Install Drive Cycle Data” on page 5-2
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Generate Parameter Data for Datasheet Battery Block
This example shows how to import lithium-ion battery sheet data and generate parameters for the
Datasheet Battery block.

In step 1, you import the datasheet data. Steps 2-5 show how to use curve-fitting techniques to obtain
the open circuit voltage and battery resistance from the datasheet data. In steps 6-8, you validate the
curve-fit voltage and battery values by comparing them to the Arrhenius behavior and the datasheet
data. Finally, in step 9, you specify these Datasheet Battery block parameters:

• Rated capacity at nominal temperature
• Open circuit voltage table data
• Open circuit voltage breakpoints 1
• Internal resistance table data
• Battery temperature breakpoints 1
• Battery capacity breakpoints 2
• Initial battery charge

Step 1: Import Battery Datasheet Data

Import the battery discharge and temperature datasheet into MATLAB. Ensure that each dataset in
the datasheet includes a starting battery cell output voltage. Typically, data collected at different
temperatures has the same reference current. Data collected at different currents has the same
reference temperature.

For this example, load the battery datasheet discharge and temperature data for a lithium-ion battery
from a file that contains 12 data sets. Each data set corresponds to battery data for a specific current
and temperature. The data sets each have two columns. The first column contains the discharge
capacity, in percent. The second column contains the corresponding battery cell voltage.

exp_data=load('ex_datasheetbattery_liion_100Ah.mat');

The example does not use the data set that corresponds to a current of 500 A at 25 ºC.

Plot the discharge and temperature curves. Figure 1 shows the lithium-ion battery discharge
characteristics at constant temperature (at five levels of current, shown as C-rate) and constant
current (at six temperatures). Figure 1 indicates the curve that corresponds to the reference
temperature of 25 ºC and the reference current of 50 A.

ex_datasheetbattery_plot_data
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Step 2: Normalize State-of-Charge (SOC) Data

To represent 1-SOC capacity at constant temperature, normalize the relative discharge capacity with
values between 0 and 1. Let 1 represent a fully discharged battery.

Set ref_exp to the dataset that corresponds to the reference temperature of 25 °C and the reference
current of 50 A. Typically, the reference temperature is room temperature.

ref_exp = 2;

If you have several data sets, use a few for validation. Do not include them as part of the estimation
dataset.

For this example, use val_exp to set up the validation and estimation data sets. Let 1 represent a
validation dataset and 0 represent an estimation dataset.

val_exp = logical([1 0 0 0 1 0 0 0 0 1 0]);

Define reference current and temperature. For this example, the reference temperature is 25 °C and
the reference current is 50 A.

ref_curr = current == current(ref_exp);
ref_temp = temperature == temperature(ref_exp);

[sort_current, sort_index_current] = sort(current(ref_temp));
[sort_temp, sort_index_temp] = sort(temperature(ref_curr));
N = length(current); % Number of experiments
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Prepare normalized x axes for each data set and find the actual capacity. x is a structure with as many
fields as data sets and values between 0 and 1.

for i=1:N
    x.(['curr' current_label{i} '_temp' temperature_label{i}]) = ...
            exp_data.([label '_' current_label{i} '_' temperature_label{i}])(:,1)/...
            exp_data.([label '_' current_label{i} '_' temperature_label{i}])(end,1);
    % Calculate actual capacity for each datasheet
    correct_cap.(['curr' current_label{i} '_temp' temperature_label{i}]) = ...
            exp_data.([label '_' current_label{i} '_' temperature_label{i}])(end,1);
end

Plot the normalized SOC data.

ex_datasheetbattery_plot_soc

Step 3: Fit Curves

Create fitObj curves for constant temperatures at different discharge rates and constant discharge
rates at different temperatures. Use the fitObj curves to create a matrix of cell/module voltage
versus discharge current at varying levels of SOC.

fitObj is a structure of fit objects that contains as many fields as data sets. The structure fits a
discharge voltage to the normalized ([0,1]) extracted Ah. This allows the discharge curves to be
algebraically combined to calculate resistance at each SOC level.

Define state of charge vector and breakpoints.
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SOC_LUT = (0:.01:1)';
SOCbkpts = 0:.2:1;

Fit the discharge curves at different currents for reference temperature.

for i=find(ref_temp)
    fitObj.(['fit' current_label{i}]) = ...
        fit(x.(['curr' current_label{i} '_temp' temperature_label{i}]),...
        exp_data.([label '_' current_label{i} '_' temperature_label{ref_exp}])(:,2),'smoothingspline');
end

Fit the discharge curves at different temperatures for reference current.

for i=find(ref_curr)
    fitObj.(['fit' temperature_label{i}]) = ...
        fit(x.(['curr' current_label{i} '_temp' temperature_label{i}]),...
        exp_data.([label '_' current_label{ref_exp} '_' temperature_label{i}])(:,2),'smoothingspline');
end

Construct the voltage versus discharge current for different SOC levels. Em_MAT is a matrix with the
SOC in rows and the current in columns.

Em_MAT = [];
for i=find(ref_temp)
    Em_MAT = [Em_MAT fitObj.(['fit' current_label{i}])(SOC_LUT)];
end

Figure 3 shows the voltage versus current at different SOCs.

ex_datasheetbattery_plot_curves
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Step 4: Extrapolate Open Circuit Voltage

To obtain the open circuit voltage, Em , fit a line to the voltage versus current curve and extrapolate to
i=0 .

R0_refTemp = [];
for i=1:length(SOC_LUT)
    % Fit a line to V=f(I)
    fitSOC.(['SOC' num2str(i)]) = fit(sort_current',Em_MAT(i,sort_index_current)','poly1');
end

To estimate open circuit voltage, Em , at all SOC levels, extrapolate the values of voltage to i=0 .

Em = [];
for i=1:length(SOC_LUT)
    % Em = f(0)
    Em = [Em fitSOC.(['SOC' num2str(i)])(0)];
end
Em = Em';

Step 5: Determine Battery Voltage and Resistance at Different Temperatures

Use the discharge and temperature data to determine the battery resistance as a function of current
and SOC at varying temperatures. The validation data is not included. Figure 4 shows the battery
voltage at different temperatures.

ex_datasheetbattery_plot_voltage
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Calculate the resistance at different temperatures using the reference current data set.

R0_LUT = [];
for i=find(ref_curr & ~val_exp)
    % Create fit object for V vs. SOC
    voltVsSOC.(['temp' temperature_label{i}]) = fitObj.(['fit' temperature_label{i}])(SOC_LUT);
    % Calculate R0(SOC,T) assuming linear behavior R0 = DeltaV / I
    R0.(['temp' temperature_label{i}]) = (Em - voltVsSOC.(['temp' temperature_label{i}]))./current(ref_exp);
    % Construct LUT
    R0_LUT = [R0_LUT R0.(['temp' temperature_label{i}])];
end

To avoid the abrupt R change close to SOC=0 , extend R(0.9) all the way up to R(1). This is needed
because of the way R is calculated. Make algorithm robust in case 0.9 is not an actual breakpoint

if ~isempty(find(SOC_LUT==0.9, 1))
    R0_LUT(SOC_LUT>0.9,:) = repmat(R0_LUT(SOC_LUT == 0.9,:),length(R0_LUT(SOC_LUT>0.9,:)),1);
else
    [closestTo0p9, locClosestTo0p9] = min(abs(SOC_LUT-0.9));
    R0_LUT(SOC_LUT>closestTo0p9,:) = repmat(R0_LUT(locClosestTo0p9,:),...
                                     length(R0_LUT(SOC_LUT>closestTo0p9,:)),1);
end

Determine the battery resistance at different temperatures.

R0_LUT = max(R0_LUT,0);
T_LUT = 273.15 + temperature(ref_curr & ~val_exp);
[T_LUT1,idx] = sort(T_LUT);
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xtmp=R0_LUT';
R0_LUT1(1:length(T_LUT),:) = xtmp(idx,:);

Figure 5 shows the battery resistance at different temperatures.

ex_datasheetbattery_plot_resistance

Step 6: Compare to Arrhenius Behavior

Since the temperature-dependent reaction rate for the lithium-ion battery follows an Arrhenius
behavior, you can use a comparison to validate the curve fit.

To determine the curve-fit prediction for the Arrhenius behavior, examine the activation energy, Ea .
Obtain the activation energy via the slope of the internal resistance, Ro , versus 1000/T curve for
different SOCs. The slope equals the activation energy, Ea , divided by the universal gas constant,
Rg .

For a lithium-ion battery, a typical value of Ea is 20 kJ/mol[2]. Figure 6 indicates that the activation
energy, Ea , obtained via the slope compares closely with 20 kJ/mol.

ex_datasheetbattery_plot_arrhenius

 
Activation energy for Li ion conduction
Ea = 17.9958       20.669      18.9557      22.8107      21.5289      24.0987 kJ/mol
Ea for electrolyte transport in Li ion battery = 20 kJ/mol
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Step 7: Fit Battery Resistance

Fit the battery resistance to the validated temperature data as a function of SOC and temperature.

R0_LUT_bkpts = [];
counter = 1;
[SOC_LUT_index, ~] = find(abs(SOC_LUT-SOCbkpts)<0.001);

for i=find(ref_curr & ~val_exp)
    R0_LUT_bkpts = [R0_LUT_bkpts R0_LUT(SOC_LUT_index,counter)];
    counter = counter+1;
end

[xx,yy,zz] = prepareSurfaceData(1000./T_LUT,SOCbkpts,log(R0_LUT_bkpts));
[R0_vs_T_SOC_fit, gof] = fit([xx,yy],zz,'linearinterp');
% [R0_vs_T_SOC_fit, gof] = fit([xx,yy],zz,'poly12');
[xx1,yy1,zz1] = prepareSurfaceData(T_LUT,SOCbkpts,R0_LUT_bkpts);
[R0_vs_T_SOC_fit1, gof] = fit([xx1,yy1],zz1,'linearinterp');

Figures 7 and 8 show the surface plots of the battery resistance as a function of SOC and
temperature.

ex_datasheetbattery_plot_surface
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Step 8: Validate Battery Model Fit

Figure 9 shows the calculated data and the experimental data set data.

ex_datasheetbattery_plot_validation

 Generate Parameter Data for Datasheet Battery Block

6-11



Step 9: Set the Datasheet Battery Block Parameters

Set the Rated capacity at nominal temperature parameter to the capacity provided by the
datasheet.

BattChargeMax = 100; % Ah Capacity from datasheet

Set the Open circuit voltage table data parameter to Em.

Em=flipud(Em);

Set the Open circuit voltage breakpoints 1 parameter to the state of charge vector.

CapLUTBp=SOC_LUT;

Set the Internal resistance table data parameter to the fitted battery resistance data as a function
of SOC and temperature.

RInt=R0_LUT_bkpts';

Set the Battery temperature breakpoints 1 parameter to the temperature vector.

BattTempBp=T_LUT1;

Set the Battery capacity breakpoints 2 parameter to the SOC vector.

CapSOCBp=SOCbkpts;

Set the Initial battery charge parameter to the value provided by the datasheet.
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BattCapInit=100;

Clean up.

clear x xx xx1 yy yy1 zz zz1;
clear batt_id col correct cap count counter current;
clear correct_cap current_label data exp_data fitObj fitSOC gof;
clear i I idx indicot j k label leg line_colors;
clear indigo N orange p1 p2 purple ref_curr ref_exp ref_temp row colorV f9 p10 p9;
clear sort_current sort_index_current sort_index_temp sort_temp;
clear temperature temperature_lable V val_exp valIdx voltVsSOC xtmp temperature_label;
clear Ea Em_MAT markerType1 R0 R0_LUT R0_LUT1 R0_LUT_bkpts R0_refTemp R0_vs_T_fit;
clear T R R0_vs_T_SOC_fit R0_vs_T_SOC_fit1 SOC_LUT SOCbkpts T_LUT T_LUT1 SOC_LUT_index;

References

[1] Jackey, Robyn, Tarun Huria, Massimo Ceraolo, and Javier Gazzarri. "High fidelity electrical model
with thermal dependence for characterization and simulation of high power lithium battery cells."
IEEE International Electric Vehicle Conference. March 2012, pp. 1-8.

[2] Ji, Yan, Yancheng Zhang, and Chao-Yang Wang. Journal of the Electrochemical Society. Volume
160, Issue 4 (2013), A636-A649.

See Also
Datasheet Battery | Battery.MetaData | Battery.Parameters | Battery.PulseSequence |
Battery.Pulse
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Generate Parameter Data for Equivalent Circuit Battery Block
Using MathWorks tools, estimation techniques, and measured lithium-ion or lead acid battery data,
you can generate parameters for the Equivalent Circuit Battery block. The Equivalent Circuit Battery
block implements a resistor-capacitor (RC) circuit battery with open circuit voltage, series resistance,
and 1 through N RC pairs. The number of RC pairs reflects the number of time constants that
characterize the battery transients. Typically, the number of RC pairs ranges from 1 through 5.

To create parameter data for the Equivalent Circuit Battery block, follow these workflow steps. The
steps use numerical optimization techniques to determine the number of recommended RC pairs,
provide initial estimates for the battery model circuit parameters, and estimate parameters to fit a
model to experimental pulse discharge data. The results provide the open circuit voltage, series
resistance, and RC pair parameter data for the Equivalent Circuit Battery block.

The workflow steps use this example script and models for a lithium-ion polymer (LiPo) battery:

• Estimate battery discharge script Example_DischargePulseEstimation.
• Model BatteryEstim3RC_PTBS.
• Model BatteryEstim3RC_PTBS_EQ.

The example battery discharge script uses a battery class to control the parameter estimation
workflow.

Workflow Description Additional MathWorks Tooling
“Step 1: Load and Preprocess
Data” on page 6-15

Load and preprocess time series
battery discharge voltage and
current data.

None

“Step 2: Determine the
Number of RC Pairs” on page
6-17

Determine the number of
necessary time constants (TC) for
estimation.

Curve Fitting Toolbox

“Step 3: Estimate Parameters”
on page 6-18

For battery discharge data,
estimate and optimize:

• Open-circuit voltage, Em
• Series resistance, R0
• RC pair(s) time constant(s),

Tau
• RC pair(s) resistance(s), Rx

Use a model that exercises the
Estimation Equivalent Circuit
Battery block.

Curve Fitting Toolbox, Parallel
Computing Toolbox, Optimization
Toolbox, and Simulink Design
Optimization
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Workflow Description Additional MathWorks Tooling
“Step 4: Set Equivalent
Circuit Battery Block
Parameters” on page 6-24

Set these block parameters:

• Open circuit voltage table
data

• Series resistance table data
• State of charge breakpoints
• Temperature breakpoints
• Battery capacity table
• Network resistance table

data
• Network capacitance table

data

None

Step 1: Load and Preprocess Data
Data Format and Requirements

The workflow supports pulse discharge sequences from 100% to 0% state-of-charge (SOC).

Data requirements include:

• Time series consisting of current and voltage from an experimental pulse discharge. For each
experimental data set, the temperature is constant. The sample rate should be a minimum of 1 Hz,
with an ideal rate at 10 Hz. This table summarizes the accuracy requirements.

Measurement Accuracy Ideal
Voltage ±5 mV ±1 mV
Current ±100 mA ±10 mA
Temperature ±1 °C ±1 °C

• Change in SOC for each pulse should not be greater than 5%.
• Data collection at high or low SOC might need modification to ensure safety.
• Sufficient relaxation time after each pulse to ensure battery approaches steady-state voltage.

Load and Preprocess Data

Load the battery time, voltage, and discharge data. Break up the data into Battery.Pulse objects.
For example, load and preprocess the discharge data for a lithium-ion polymer (LiPo) battery using
the Step1: Load and Preprocess Data commands in the
Example_DischargePulseEstimation script.
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Pulse Sequence
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Pulse Identification

Step 2: Determine the Number of RC Pairs
Determine how many RC pairs to use in the model. You can investigate how many RC pairs to use by
executing the Step 2: Determine the Number of RC Pairs commands in the
Example_DischargePulseEstimation script. The example script uses the
BatteryEstim3RC_PTBS model.

Compare Pulse Time Constants

Compare the time constants (TC) for each pulse. This example compares three pulses.
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TC Comparison, Pulse 3 of 3

Step 3: Estimate Parameters
Estimate the parameters. You can investigate parameter estimation by executing the Step 3:
Estimate Parameters commands in the Example_DischargePulseEstimation script.

Estimate Em and R0

Inspect the voltage immediately before and after the current is applied and removed at the start and
end of each pulse. The estimation technique uses the voltage for a raw calculation to estimate the
open-circuit voltage (Em) and the series resistance (R0).
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Parameter Tables

Estimate Tau

Use a curve-fitting technique on the pulse relaxation to estimate the RC time constant (Tau) at each
SOC.
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Relaxation Tau Fit

Plot Estimates

Plot the parameter and pulse sequence data and simulation comparison.
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Parameter Tables
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Pulse Sequence

Identify Parameters and Set Initial Values

Identify parameters and set the initial values using a linear system approach, pulse-by-pulse.
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Linear Fit

Optimize Estimates

Optimize the Em, R0, Rx, and Tau estimates using Simulink Design Optimization.
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Pulse Identification

Step 4: Set Equivalent Circuit Battery Block Parameters
Set the Equivalent Circuit Battery block parameters to the values determined in step 3. To investigate
setting the block parameters, execute the Step 4: Set Equivalent Circuit Battery Block
Parameters commands in the Example_DischargePulseEstimation script. The experiment ran
at two constant temperatures. There are three RC-pairs. The Equivalent Circuit Battery block
parameter values are summarized in this table:

Parameter Example Value
Number of series RC pairs 3
Open circuit voltage table data, EM EmPrime = repmat(Em,2,1)';

Series resistance table data, R0 R0Prime = repmat(R0,2,1)';

State of charge breakpoints, SOC_BP SOC_LUTPrime = SOC_LUT;
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Parameter Example Value
Temperature breakpoints, Temperature_BP TempPrime = [303 315.15];

Battery capacity table CapacityAhPrime = [CapacityAh CapacityAh];

Network resistance table data, R1 R1Prime = repmat(Rx(1,:),2,1)';

Network capacitance table data, C1 C1Prime = repmat(Tx(1,:)./Rx(1,:),2,1)';

Network resistance table data, R2 R2Prime = repmat(Rx(2,:),2,1)';

Network capacitance table data, C2 C2Prime = repmat(Tx(2,:)./Rx(2,:),2,1)';

Network resistance table data, R3 R3Prime = repmat(Rx(3,:),2,1)';

Network capacitance table data, C3 C3Prime = repmat(Tx(3,:)./Rx(3,:),2,1)';
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Generate Parameters for Flux-Based Blocks
This table provides a description of the process to generate the parameters and links to examples.

For Block To Generate Description Example
Flux-Based PM
Controller

Current Controller
parameters:

• Corresponding d-
axis current
reference, id_ref

• Corresponding q-
axis current
reference, iq_ref

• Vector of speed
breakpoints, wbp

• Vector of torque
breakpoints, tbp

Use the Model-Based
Calibration Toolbox to
generate optimized
current controller tables
for flux-based motor
controllers.

Based on nonlinear
motor flux data, the
calibration tables
optimize:

• Motor efficiency
• Maximum torque per

ampere (MTPA)
• Flux weakening

“Generate Current
Controller Parameters”
on page 6-28

Motor parameters:

• Vector of d-axis
current
breakpoints,
id_index

• Vector of q-axis
current
breakpoints,
iq_index

• Corresponding d-
axis flux, lambda_d

• Corresponding q-
axis flux, lambda_q

Use MATLAB scripts
available with
Powertrain Blockset to
load flux motor data,
visualize the flux
surface, and create
plots of flux as a
function of current.

“Generate Feed-
Forward Flux
Parameters” on page 6-
49

Flux-Based PMSM Parameters:

• Vector of d-axis
flux, flux_d

• Vector of q-axis
flux, flux_q

• Corresponding d-
axis current, id

• Corresponding q-
axis current, iq

Use MATLAB scripts
available with
Powertrain Blockset to
load flux motor data,
invert the flux, and
create plots of current
as a function of flux.

“Generate Parameters
for Flux-Based PMSM
Block” on page 6-53

To open a model with optimized parameters for the Flux-Based PM Controller and Flux-Based PMSM
blocks, on the command-line, type Flux_Based_PMSM_TestBench.
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Generate Current Controller Parameters
Using the Model-Based Calibration Toolbox, you can generate optimized current tables for flux-based
motor controllers. Use the calibration tables for the Powertrain Blockset Flux-Based PM Controller
current controller block parameters.

Based on nonlinear motor flux data, the calibration tables optimize:

• Motor efficiency
• Maximum torque per ampere (MTPA)
• Flux weakening

To generate optimized current tables, follow these workflow steps.

Workflow Steps Description MathWorks Tooling
“Collect and Post Process Motor
Data” on page 6-29

Collect the nonlinear motor flux data
from dynamometer testing or finite
element analysis (FEA). For this
example, file
PMSMEfficiencyData.xlsx
contains the data that you need:

• Total flux, Ψtotal, in Wb
• Allowed flux, Ψmax, in Wb
• d-axis flux, Ψd, in Wb
• q-axis flux, Ψq, in Wb
• d-axis current, Id, in A
• q-axis current, Iq, in A
• Current magnitude, Is, in A
• Motor torque, Te, in N·m
• Motor speed, n, in rpm

N/A

“Model Motor Data” on page 6-
30

Use a one-stage model to fit the data.
Specifically:

• Import data
• Filter data
• Fit model

Model-Based Calibration
Toolbox

6 Calibration

6-28



Workflow Steps Description MathWorks Tooling
“Generate Calibration” on page
6-34

Calibrate and optimize the data using
objectives and constraints.
Specifically:

• Create functions.
• Create tables from model.
• Run an optimization.
• Generate and fill optimized

current controller calibration
tables that are functions of motor
torque and motor speed.

Model-Based Calibration
Toolbox

“Set Block Parameters” on page
6-47

Use the optimized current controller
calibration tables for the Flux-Based
PM Controller block current
controller parameters.

Powertrain Blockset

Collect and Post Process Motor Data
Collect this nonlinear motor flux data from dynamometer testing or finite element analysis (FEA):

• d- and q- axis current
• d- and q- axis flux linkage
• Electromagnetic motor torque

Use the collected data and motor speed to calculate the total flux, maximum flux, and current
magnitude:

ψtotal = ψd2 + ψq2

is = id2 + iq2

n =
60ωe
2πP

ψmax =
Vdc
3ωe

The equations use these variables:

id, iq d- and q- axis current, respectively
is, Current magnitude
Ψd, Ψq d- and q- axis flux linkage, respectively
Ψtotal, Ψmax Total and allowed flux, respectively
ωe Electrical motor angular speed, rad/s
n Motor speed, rpm
Vdc Inverter bus voltage
P Number of pole pairs

Finally, for each data point, create a file containing:
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• Total flux, Ψtotal, in Wb
• Allowed flux, Ψmax, in Wb
• d-axis flux, Ψd, in Wb
• q-axis flux, Ψq, in Wb
• d-axis current, Id, in A
• q-axis current, Iq, in A
• Current magnitude, Is, in A
• Motor torque, Te, in N·m
• Motor speed, n, in rpm

For this example:

• Pole pairs, P, is 4
• Inverter bus voltage, Vdc, is 500

the data file matlab\toolbox\mbc\mbctraining\PMSMEfficiencyData.xlsx contains the
motor flux data.

Model Motor Data
To model the motor data, use the MBC Model Fitting app to import, filter, and fit the data with a
point-by-point model. For this example, the data file PMSMEfficiencyData.xlsx contains a large
data set. You could consider using a design of experiment (DOE) to limit the data. However, the data
set represents typical FEA analysis results.

Since there is a simple relationship between the d- and q-axis currents for fixed torque-speed
operating points, the point-by-point model provides an accurate fit.

For comparison, the PMSM maximum efficiency calibration case study contains the model fit.

Import Data

For this example, PMSMEfficiencyData.xlsx contains this motor controller data:

• Total flux, Ψtotal, in Wb
• Allowed flux, Ψmax, in Wb
• d-axis flux, Ψd, in Wb
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• q-axis flux, Ψq, in Wb
• d-axis current, Id, in A
• q-axis current, Iq, in A
• Current magnitude, Is, in A
• Motor torque, Te, in N·m
• Motor speed, n, in rpm

1 In MATLAB, on the Apps tab, in the Automotive group, click MBC Model Fitting.
2 In the Model Browser home page, click Import Data. Click OK to open a data source file.
3 Navigate to the matlab\toolbox\mbc\mbctraining folder. Open data file

PMSMEfficiencyData.xlsx. The Data Editor opens with your data.

Filter Data

You can filter data to exclude records from the model fit. In this example, set up a filter to include
only flux and current magnitudes that are less than a specified threshold. Specifically:

• Current magnitude, Is, less than or equal to 300 A.
• Total flux, Ψtotal, less than or equal to allowed flux Ψmax
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1 In the Data Editor, select Tools > Filters to open the Filter Editor. Create these filters:

• Is <= 300
• Flux <= Flux_allowed

Define Test Groupings

For point-by-point models, you need to define test groups. In the example, define groups for motor
torque and speed. Set the tolerances to so that Model-Based Calibration Toolbox groups small
variations in torque and speed at the same operating point.

1 In the Data Editor, select Tools > Test Groups to open the Define Test Groupings dialog box.
Create groups for the motor torque and speed.

2 Set these tolerances:

• Motor torque, Trq, to 1.000
• Motor speed, n, to 10.000

3 In the Data Editor, select File > Save & Close. Accept the changes to the data.
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Fit Model

Fit the data to a point-by-point model with these responses, local inputs, and operating points:

• Responses

• q-axis current, Iq, in A
• Local inputs

• d-axis current, Id, in A
• Operating points

• Motor speed, n, in rpm
• Electromagnetic motor torque, Te, in N·m

1 In the Model Browser, select Fit Models.
2 In Fit Models, configure a Point-by-Point model with these responses and inputs.

Responses Local Inputs Operating Points
Iq Id Trq

n
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3 To fit the model, select OK. If prompted, accept changes to data. By default, the fit uses a
Gaussian Process Model (GPM) to fit the data.

4 After the fit completes, examine the response models for Iq. The Model Browser displays
information that you can use to determine the accuracy of the model fit.

• In the Model Browser, select Iq. Examine the response surface and diagnostic statistics.
These results indicate a reasonably accurate fit. You can browse through each test to examine
the response for each torque-speed operating point.

5 Save your project. For example, select Files > Save Project. Save gs_example.mat to the
work folder.

Generate Calibration
After you fit the model, create functions and tables, run the optimization, and fill the calibration
tables.

For comparison, the PMSM maximum efficiency calibration case study contains the calibration
results.
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Import Models and Create Functions

Import models and create the functions to use when you optimize the calibration. In this example, set
up functions for:

• Current magnitude, Is

• Torque per amp, TPA

1 In MATLAB, on the Apps tab, in the Automotive group, click MBC Optimization.
2 In the Cage Browser, select Models. If it is not already opened, in the MBC Model Fitting

browser, open the gs_example.mat project.
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3 In Import Models, click OK. Close the CAGE Import Tool.

4 In the Cage Browser toolbar, use New Function Model wizard to create these functions:

• Is = sqrt(Id^2 + Iq^2)
• TPA = Trq/Is

5 In the Cage Browser, verify that the function models for Is and TPA have these descriptions.
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6 Select File > Save Project. Save gs_example.cag to the work folder.

Create Lookup Tables from Model

Create tables that the Model-Based Calibration Toolbox optimizers uses to store the optimized
parameters. For this example, the tables are:

• d-axis current, Id, as a function of motor torque, Trq, and motor speed, n.
• q-axis current, Iq, as a function of motor torque, Trq, and motor speed, n.

1 In the Cage Browser, select Lookup Tables and Tradeoff. In Create Lookup Tables from Model,
select Iq. Click Next.

2 In the Create Lookup Tables from Model wizard:

• Clear Use model operating points.
• Set Table rows to 31.
• Set Table columns to 29.
• Click Next.
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3 In Create Lookup Tables from Model:

• Select Id and Iq.
• Click Finish.
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4 In the CAGE Browser, examine the tables.

Run Optimization

In this example, run an optimization with these specifications:

• Current magnitude, Is, less than or equal to 300 A.
• Maximizes torque per ampere, TPA.

1 On the Cage Browser home, select Optimization.

2 In Create Optimization from Model, select TPA and Next.
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3 In Create Optimization from Model:

• Select Id.
• Set Objective type to Maximize.
• Click Finish.

4 Add the optimization constraint for the current magnitude, Is. In the CAGE Browser, select
Optimization > Constraints > Add Constraints to open Edit Constraint. Use the dialog box to
create a constraint on the current.

• Is <= 300
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5 In the Cage Browser, carefully verify the Objectives and Constraints.

6 In the Cage Browser, select Run.
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The optimization results are similar to these.
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Fill Lookup Tables

1 In the CAGE Browser, select Fill Lookup Tables.

2 Use the Lookup Table Filling from Optimization Results Wizard to fill the Id_Table and
Iq_Table tables.

• For the Id_Table, fill with Id.
• For the Iq_Table, fill with Iq.
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Click Next. For the Fill Method, select Clip Fill (column-based).

Click Finish.
3 Review results for Iq_Table. The results are similar to these.
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4 Review results for Id_Table. The results are similar to these.

5 Select File > Save Project. Save gs_example.cag to work folder.
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Export Results

1 Select File > Export > Calibration.
2 Use Export Calibration Data to select the items to export and format. For example, export the Id

and Iq tables and breakpoints to MATLAB file gs_example.m.

Set Block Parameters
The optimized current controller calibration tables are functions of motor torque and motor speed.
Use the tables for these Flux-Based PM Controller block parameters:

• Corresponding d-axis current reference, id_ref
• Corresponding q-axis current reference, iq_ref
• Vector of speed breakpoints, wbp
• Vector of torque breakpoints, tbp

To set the block parameters:

1 Run the .m file that contains the Model-Based Calibration Toolbox calibration results for the
current controller. For example, in the MATLAB command line, run gs_example.m:
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% Access data from MBC current controller calibration
gs_example

2 Assign the breakpoint parameters to the data contained in the .m file. In this example, the speed
data is in rpm. To use the calibration data for the block parameters, convert the speed
breakpoints from rpm to rad/s.

Parameter MATLAB Commands
Vector of speed breakpoints, wbp tbp=Trq_norm.X;

Vector of speed breakpoints, wbp % MBC data for speed is in rpm.  
% For the block parameter, use rad/s
nbp=n_norm.X;
conversion=(2*pi/60.);
wbp=conversion.*nbp;

Corresponding d-axis current reference,
id_ref

id_table=Id_Table.Z;
id_ref=id_table';

Corresponding q-axis current reference,
iq_ref

iq_table=Iq_Table.Z;
iq_ref=iq_table';
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Generate Feed-Forward Flux Parameters
Using MathWorks tools, you can create lookup tables for an interior permanent magnet synchronous
motor (PMSM) controller that characterizes the d-axis and q-axis flux as a function of d-axis and q-
axis currents.

To generate the flux parameters for the Flux-Based PM Controller block, follow these workflow steps.
The steps use example script VisualizeFluxSurface.m.

Workflow Description
“Step 1: Load and Preprocess Data” on page 6-
49

Load and preprocess this nonlinear motor flux
data from dynamometer testing or finite element
analysis (FEA):

• d- and q- axis current
• d- and q- axis flux
• Electromagnetic motor torque

“Step 2: Generate Evenly Spaced Data” on page
6-49

Use spline interpolation to generate evenly
spaced data. Visualize the flux surface plots.

“Step 3: Set Block Parameters” on page 6-51 Set workspace variables that you can use for the
Flux-Based PM Controller block parameters.

Step 1: Load and Preprocess Data
Load and preprocess this nonlinear motor flux data from dynamometer testing or finite element
analysis (FEA):

• d- and q- axis current
• d- and q- axis flux
• Electromagnetic motor torque

1 Open the example script VisualizeFluxSurface.m.
2 Load and preprocess the data.

%
% Load the data from a |mat| file captured from a dynamometer or 
% another CAE tool.
load FEAdata.mat;

% Load the data matrix.
lambda_d = FEAdata.flux.d;
lambda_q = FEAdata.flux.q;
id = FEAdata.current.d;
iq = FEAdata.current.q;

Step 2: Generate Evenly Spaced Data
The flux tables and can have different step sizes for the currents. Evenly spacing the rows and
columns helps improve interpolation accuracy. This script uses spline interpolation.
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1 Set the spacing for the table rows and columns.

% Set the spacing for the table rows and columns 
flux_d_size = 50;
flux_q_size = 50;

2 Use spline interpolation to get higher resolution.

% Use spline interpolation to get higher resolution
id_new = linspace(min(id),max(id),flux_d_size);
iq_new = linspace(min(iq),max(iq),flux_q_size);
lambda_d_new = interp2(id',iq,lambda_d,id_new',iq_new,'spline');
lambda_q_new = interp2(id',iq,lambda_q,id_new',iq_new,'spline');

3 Visualize the flux surfaces.

% Visualize the flux surface
figure;
mesh(id_new,iq_new,lambda_d_new);
xlabel('I_d [A]')
ylabel('I_q [A]')
title('\lambda_d'); grid on;

figure;
mesh(id_new,iq_new,lambda_q_new);
xlabel('I_d [A]')
ylabel('I_q [A]')
title('\lambda_q'); grid on;

• d-axis flux, λd, as a function of d-axis current, Id, and q-axis current, Iq.

6 Calibration

6-50



• q-axis flux, λq, as a function of d-axis current, Id, and q-axis current, Iq.

Step 3: Set Block Parameters
Set the block parameters to these values assigned in the example script.

Parameter MATLAB Commands
Vector of d-axis current breakpoints,
id_index

id_index=id_new;

Vector of q-axis current breakpoints,
iq_index

iq_index=iq_new;

Corresponding d-axis flux, lambda_d lambda_d=lambda_d_new;

Corresponding q-axis flux, lambda_q lambda_q=lambda_q_new;
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Generate Parameters for Flux-Based PMSM Block
Using MathWorks tools, you can create lookup tables for an interior permanent magnet synchronous
motor (PMSM) controller that characterizes the d-axis and q-axis current as a function of d-axis and
q-axis flux.

To generate the flux parameters for the Flux-Based PMSM block, follow these workflow steps.
Example script CreatingIdqTable.m calls gridfit to model the current surface using scattered
or semi-scattered flux data.

Workflow Description
“Step 1: Load and Preprocess Data” on page 6-
53

Load and preprocess this nonlinear motor flux
data from dynamometer testing or finite element
analysis (FEA):

• d- and q- axis current
• d- and q- axis flux
• Electromagnetic motor torque

“Step 2: Generate Evenly Spaced Table Data
From Scattered Data” on page 6-54

Use the gridfit function to generate evenly
spaced data. Visualize the flux surface plots.

“Step 3: Set Block Parameters” on page 6-56 Set workspace variables that you can use for the
Flux-Based PM Controller block parameters.

Step 1: Load and Preprocess Data
Load and preprocess this nonlinear motor flux data from dynamometer testing or finite element
analysis (FEA):

• d- and q- axis current
• d- and q- axis flux
• Electromagnetic motor torque

1 Open the example script CreatingIdqTable.m.
2 Load and preprocess the data.

% Load the data from a |mat| file captured from a dynamometer or 
% another CAE tool.
load FEAdata.mat;

3 Determine the minimum and maximum flux values.

flux_d_min = min(min(FEAdata.flux.d)) ;
flux_d_max = max(max(FEAdata.flux.d)) ;
flux_q_min = min(min(FEAdata.flux.q)) ;
flux_q_max = max(max(FEAdata.flux.q)) ;

4 Plot the sweeping current points used to collect the data.

for i = 1:length(FEAdata.current.d)
    for j = 1:1:length(FEAdata.current.q)
    plot(FEAdata.current.d(i),FEAdata.current.q(j),'b*');
    hold on

 Generate Parameters for Flux-Based PMSM Block

6-53



    end
end

5 Plot the current limit sweeping points and circle.

for angle_theta = pi/2:(pi/2/200):(3*pi/2)
    plot(300*cos(angle_theta),300*sin(angle_theta),'r.');
    hold on
end
xlabel('I_d [A]')
ylabel('I_q [A]')
title('Sweeping Points'); grid on;
xlim([-300,0]);
ylim([-300,300]);
hold off

Step 2: Generate Evenly Spaced Table Data From Scattered Data
The flux tables and can have different step sizes for the currents. Evenly spacing the rows and
columns helps improve interpolation accuracy. This script uses spline interpolation.

1 Set the spacing for the table rows and columns.

% Set the spacing for the table rows and columns
flux_d_size = 50;
flux_q_size = 50;

2 Generate linear spaced vectors for the breakpoints.
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% Generate linear spaced vectors for the breakpoints
ParamFluxDIndex = linspace(flux_d_min,flux_d_max,flux_d_size);
ParamFluxQIndex = linspace(flux_q_min,flux_q_max,flux_q_size);

3 Create 2-D grid coordinates based on the d-axis and q-axis currents.

% Create 2-D grid coordinates based on the d-axis and q-axis currents 
[id_m,iq_m] = meshgrid(FEAdata.current.d,FEAdata.current.q);

4 Create the table for the d-axis current.
% Create the table for the d-axis current
id_fit = gridfit(FEAdata.flux.d,FEAdata.flux.q,id_m,ParamFluxDIndex,ParamFluxQIndex);
ParamIdLookupTable = id_fit'; 
figure;
surf(ParamFluxDIndex,ParamFluxQIndex,ParamIdLookupTable'); 
xlabel('\lambda_d [v.s]');ylabel('\lambda_q [v.s]');zlabel('id [A]');title('id Table'); grid on;
shading flat;

d-axis current, Id, as a function of q-axis flux, λq, and d-axis flux, λd.

5 Create the table for the q-axis current.
% Create the table for the q-axis current
iq_fit = gridfit(FEAdata.flux.d,FEAdata.flux.q,iq_m,ParamFluxDIndex,ParamFluxQIndex);
ParamIqLookupTable = iq_fit'; 
figure;
surf(ParamFluxDIndex,ParamFluxQIndex,ParamIqLookupTable');
xlabel('\lambda_d [v.s]');ylabel('\lambda_q [v.s]');zlabel('iq [A]'); title('iq Table'); grid on;
shading flat;

q-axis current, Iq, as a function of q-axis flux, λq, and d-axis flux, λd.
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Step 3: Set Block Parameters
Set the block parameters to these values assigned in the example script.

Parameter MATLAB Commands
Vector of d-axis flux, flux_d flux_d=ParamFluxDIndex;

Vector of q-axis flux, flux_q flux_q=ParamFluxQIndex;

Corresponding d-axis current, id id=ParamIdLookupTable;

Corresponding q-axis current, iq iq=ParamIqLookupTable;

References
[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. “High fidelity nonlinear IPM modeling based on

measured stator winding flux linkage.” IEEE Transactions on Industry Applications, Vol. 51,
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[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. “A High-Fidelity and
Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the
Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect.” IEEE Transactions on
Industrial Electronics, Vol. 62, No. 7, July 2015.

[3] Ottosson, J., M. Alakula. “A compact field weakening controller implementation.” International
Symposium on Power Electronics, Electrical Drives, Automation and Motion, July, 2006.
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See Also
Flux-Based PM Controller | Flux-Based PMSM

External Websites
• Surface Fitting using gridfit
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Conventional Vehicle Reference Application
The conventional vehicle reference application represents a full vehicle model with an internal
combustion engine, transmission, and associated powertrain control algorithms. Use the reference
application for powertrain matching analysis and component selection, control and diagnostic
algorithm design, and hardware-in-the-loop (HIL) testing.

For more information, see “Explore the Conventional Vehicle Reference Application” on page 3-4.

See Also
Drive Cycle Source | Longitudinal Driver | SI Core Engine | Mapped SI Engine | SI Controller |
Mapped CI Engine | CI Core Engine | CI Controller

Related Examples
• “Conventional Vehicle Spark-Ignition Engine Fuel Economy and Emissions” on page 1-10
• “Conventional Vehicle Powertrain Efficiency” on page 1-15
• “Generate a Deep Learning SI Engine Model” on page 3-110

More About
• “Analyze Power and Energy” on page 3-117
• “Internal Combustion Mapped and Dynamic Engine Models” on page 3-116
• “Variant Systems”
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HEV Multimode Reference Application
The hybrid electric vehicle (HEV) multimode reference application represents a full multimode HEV
model with an internal combustion engine, transmission, battery, motor, generator, and associated
powertrain control algorithms. Use the reference application for powertrain matching analysis and
component selection, control and diagnostic algorithm design, and hardware-in-the-loop (HIL)
testing.

For more information, see “Explore the Hybrid Electric Vehicle Multimode Reference Application” on
page 3-18.

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| SI Core Engine | Mapped SI Engine | SI Controller | Mapped CI Engine | CI Core Engine | CI
Controller

Related Examples
• “Explore the Hybrid Electric Vehicle Input Power-Split Reference Application” on page 3-36
• “Explore the Hybrid Electric Vehicle P2 Reference Application” on page 3-59
• “Explore the Electric Vehicle Reference Application” on page 3-25

More About
• “Analyze Power and Energy” on page 3-117
• “Variant Systems”
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HEV Input Power-Split Reference Application
The hybrid electric vehicle (HEV) input power-split reference application represents a full HEV model
with an internal combustion engine, transmission, battery, motor, generator, and associated
powertrain control algorithms. Use the HEV input power-split reference application for HIL testing,
tradeoff analysis, and control parameter optimization of a power-split hybrid like the Toyota® Prius®.

For more information, see “Explore the Hybrid Electric Vehicle Input Power-Split Reference
Application” on page 3-36.

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| SI Core Engine | Mapped SI Engine | SI Controller | Mapped CI Engine | CI Core Engine | CI
Controller

Related Examples
• “Explore the Hybrid Electric Vehicle Multimode Reference Application” on page 3-18
• “Explore the Hybrid Electric Vehicle P2 Reference Application” on page 3-59
• “Explore the Electric Vehicle Reference Application” on page 3-25

More About
• “Analyze Power and Energy” on page 3-117
• “Variant Systems”
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HEV P0 Reference Application
The hybrid electric vehicle (HEV) P0 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P0 hybrid.

For more information, see “Explore the Hybrid Electric Vehicle P0 Reference Application” on page 3-
45.

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| SI Core Engine | Mapped SI Engine | SI Controller | Mapped CI Engine | CI Core Engine | CI
Controller

Related Examples
• “Explore the Hybrid Electric Vehicle Input Power-Split Reference Application” on page 3-36
• “Explore the Hybrid Electric Vehicle Multimode Reference Application” on page 3-18
• “Explore the Electric Vehicle Reference Application” on page 3-25

More About
• “Analyze Power and Energy” on page 3-117
• “Variant Systems”
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HEV P1 Reference Application
The hybrid electric vehicle (HEV) P1 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P1 hybrid.

For more information, see “Explore the Hybrid Electric Vehicle P1 Reference Application” on page 3-
52.

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| SI Core Engine | Mapped SI Engine | SI Controller | Mapped CI Engine | CI Core Engine | CI
Controller

Related Examples
• “Explore the Hybrid Electric Vehicle Input Power-Split Reference Application” on page 3-36
• “Explore the Hybrid Electric Vehicle Multimode Reference Application” on page 3-18
• “Explore the Electric Vehicle Reference Application” on page 3-25

More About
• “Analyze Power and Energy” on page 3-117
• “Variant Systems”
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HEV P2 Reference Application
The hybrid electric vehicle (HEV) P2 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P2 hybrid.

For more information, see “Explore the Hybrid Electric Vehicle P2 Reference Application” on page 3-
59.

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| SI Core Engine | Mapped SI Engine | SI Controller | Mapped CI Engine | CI Core Engine | CI
Controller

Related Examples
• “Explore the Hybrid Electric Vehicle Input Power-Split Reference Application” on page 3-36
• “Explore the Hybrid Electric Vehicle Multimode Reference Application” on page 3-18
• “Explore the Electric Vehicle Reference Application” on page 3-25

More About
• “Analyze Power and Energy” on page 3-117
• “Variant Systems”
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HEV P3 Reference Application
The hybrid electric vehicle (HEV) P3 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P3 hybrid.

For more information, see “Explore the Hybrid Electric Vehicle P3 Reference Application” on page 3-
69.

See Also
Interior PMSM | Interior PM Controller | Drive Cycle Source | Longitudinal Driver | Mapped SI
Engine | SI Controller | Mapped CI Engine | CI Controller

Related Examples
• “Explore the Hybrid Electric Vehicle Input Power-Split Reference Application” on page 3-36
• “Explore the Hybrid Electric Vehicle Multimode Reference Application” on page 3-18
• “Explore the Electric Vehicle Reference Application” on page 3-25

More About
• “Analyze Power and Energy” on page 3-117
• “Variant Systems”
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HEV P4 Reference Application
The hybrid electric vehicle (HEV) P4 reference application represents a full HEV model with an
internal combustion engine, transmission, battery, motor, and associated powertrain control
algorithms. Use the reference application for hardware-in-the-loop (HIL) testing, tradeoff analysis,
and control parameter optimization of a HEV P4 hybrid.

For more information, see “Explore the Hybrid Electric Vehicle P4 Reference Application” on page 3-
76.

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| SI Core Engine | Mapped SI Engine | SI Controller | Mapped CI Engine | CI Core Engine | CI
Controller

Related Examples
• “Explore the Hybrid Electric Vehicle Input Power-Split Reference Application” on page 3-36
• “Explore the Hybrid Electric Vehicle Multimode Reference Application” on page 3-18
• “Explore the Electric Vehicle Reference Application” on page 3-25

More About
• “Analyze Power and Energy” on page 3-117
• “Variant Systems”
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EV Reference Application
The electric vehicle (EV) reference application represents a full electric vehicle model with a motor-
generator, battery, direct-drive transmission, and associated powertrain control algorithms. Use the
electric vehicle reference application for powertrain matching analysis and component selection,
control and diagnostic algorithm design, and hardware-in-the-loop (HIL) testing.

For more information, see “Explore the Electric Vehicle Reference Application” on page 3-25.

See Also
Interior PMSM | Interior PM Controller | Datasheet Battery | Drive Cycle Source | Longitudinal Driver
| Mapped Motor

Related Examples
• “Explore the Hybrid Electric Vehicle Multimode Reference Application” on page 3-18
• “Explore the Hybrid Electric Vehicle Input Power-Split Reference Application” on page 3-36
• “Explore the Hybrid Electric Vehicle P2 Reference Application” on page 3-59

More About
• “Analyze Power and Energy” on page 3-117
• “Variant Systems”
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FCEV Reference Application
The fuel cell electric vehicle (FCEV) reference application represents a fuel cell electric vehicle model
with a motor-generator, battery, direct-drive transmission, and associated powertrain control
algorithms. Use the fuel cell electric vehicle reference application for powertrain matching analysis
and component selection, control and diagnostic algorithm design, and hardware-in-the-loop (HIL)
testing.

For more information, see “Explore the Fuel Cell Electric Vehicle Reference Application” on page 3-
31.
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CI Engine Dynamometer Reference Application
The compression-ignition (CI) engine dynamometer reference application represents a CI engine
plant and controller connected to a dynamometer with a tailpipe emission analyzer. Using the
reference application, you can calibrate, validate, and optimize the engine controller and plant model
parameters before integrating the engine with the vehicle model.

For more information, see “Explore the CI Engine Dynamometer Reference Application” on page 3-
10.

See Also
Mapped CI Engine | CI Core Engine | CI Controller

More About
• “CI Engine Project Template” on page 4-2
• “Generate Mapped CI Engine from a Spreadsheet” on page 3-101
• “Resize the CI Engine” on page 3-87
• “Internal Combustion Mapped and Dynamic Engine Models” on page 3-116
• “Variant Systems”

7 Powertrain Blockset Examples

7-12



SI Engine Dynamometer Reference Application
The spark-ignition (SI) engine dynamometer reference application represents a SI engine plant and
controller connected to a dynamometer with a tailpipe emission analyzer. Using the reference
application, you can calibrate, validate, and optimize the engine controller and plant model
parameters before integrating the engine with the vehicle model.

For more information, see “Explore the SI Engine Dynamometer Reference Application” on page 3-14.

See Also
SI Core Engine | Mapped SI Engine | SI Controller

More About
• “Generate Mapped SI Engine from a Spreadsheet” on page 3-106
• “Generate a Deep Learning SI Engine Model” on page 3-110
• “Resize the SI Engine” on page 3-94
• “Internal Combustion Mapped and Dynamic Engine Models” on page 3-116
• “Variant Systems”
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Motor Dynamometer Reference Application
The motor dynamometer reference application represents a motor controller and plant connected to a
dynamometer. Using the reference application, you can calibrate, validate, and optimize the motor
controller and plant model parameters before integrating the motor with the vehicle model.

For more information, see “Explore the Motor Dynamometer Reference Application” on page 3-83.

See Also
Mapped Motor | Interior PM Controller | Interior PMSM | Flux-Based PM Controller | Flux-Based
PMSM

More About
• “Resize the Motor” on page 3-86
• “Variant Systems”
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Optimize Transmission Control Module Shift Schedules
This example shows how to use the conventional vehicle reference application to optimize the
transmission control module (TCM) shift schedules. Use the optimized shift schedules to:

• Design control algorithms.
• Assess the impact of powertrain changes, such as an engine or gear ratio, on performance, fuel

economy, and emissions.

This example uses the Global Optimization Toolbox, Simulink® Design Optimization™, and
Stateflow®. To increase optimization performance, consider using the Parallel Computing Toolbox™.

For more information about the reference application, see “Explore the Conventional Vehicle
Reference Application” on page 3-4.

Run Conventional Vehicle Reference Application

Click Run to simulate the conventional vehicle reference application with the default settings. The
results indicate that the conventional vehicle has a fuel economy of approximately 31 mpg.

Optimize Transmission Shift Maps

Click Optimize Transmission Shift Maps. Optimizing the shift schedules can take time to run. If
you have the Parallel Computing Toolbox, the optimization uses parallel workers by default. View the
optimization in the MATLAB® window.
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View Results

After you optimize the shift schedule, view the results.

The performance scope indicates that the conventional vehicle with an optimized TCM shift schedule
has a fuel economy of approximately 40 mpg.

The figure shows the transmission shift schedule upshift and downshift calibration lines before and
after optimization.

Open Reference Application From Command Line

Use this command to open a version of the conventional vehicle reference application that includes
the option to optimize transmission shift maps.
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autoblkConVehShftOptStart

See Also

More About
• “Explore the Conventional Vehicle Reference Application” on page 3-4
• “Global Optimization Toolbox”
• “Simulink Design Optimization”
• “Stateflow”
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Calibrate ECMS Block
This example shows how to calibrate the ECMS block in the HEV P2 reference application.

HEV P2 Reference Application

Open the P2 reference application.

autoblkHevP2Start

Set Path

Sets path to the calibration script.

path = fullfile(matlabroot,'examples','autoblks','main','internal');
addpath(path);

Execute Calibration Script

% calibration_ecms_script
pxName="P2"; % PT configuration type, P0,P1,P2,P3,P4
battMdl = "BattHev"+pxName; % battery model - for SOC sweep
mdlName="Hev"+pxName+"ReferenceApplication"; % Hev model
ctrlMdl="Hev"+pxName+"OptimalController"; % Controller model
maxIterat=4;% maximum iterations
SOCinit = 0.85; % initial SOC, unit is in [0, 1]
SOCEndTrg = SOCinit*100;

% Plot window size and position
x0=600;
y0=1040;
width=600;
height=280;

tic
load_system(mdlName);
load_system(ctrlMdl);
load_system(battMdl);

blk = mdlName + "/" + "Drive Cycle Source";
m = get_param(blk, 'MaskObject');
ECMS_CurrentCycle = m.Parameters(1,1).Value; % Current cycle setting.

mdlWks = get_param(ctrlMdl,'ModelWorkspace');  % find model workspace
% get current ECMS_s value
ECMS_obj = getVariable(mdlWks,'ECMS_s');
if  isnumeric(ECMS_obj); ECMS_CurrentValue = ECMS_obj; end
if ~isnumeric(ECMS_obj); ECMS_CurrentValue = ECMS_obj.Value; end

% extract initial value/name of ECMS tuning parameter
p = Simulink.Mask.get(ctrlMdl+"/ECMS");
baseParamName=p.getParameter("ECMS_s").Value;
battChrgMaxValue_obj = getVariable(get_param(battMdl,'modelworkspace'),'BattChargeMax');
if  isnumeric(battChrgMaxValue_obj); battChrgMaxValue = battChrgMaxValue_obj; end
if ~isnumeric(battChrgMaxValue_obj); battChrgMaxValue = battChrgMaxValue_obj.Value; end

% set to a temp name
set_param(ctrlMdl+"/ECMS",'ECMS_s',"ECMS_s_tune")
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save_system(mdlName,[],'SaveDirtyReferencedModels','on');
save_system(ctrlMdl,[],'SaveDirtyReferencedModels','on');

% Enable SOC recording
x1_handles = get_param(mdlName+"/Visualization/Rate Transition1",'PortHandles');
x1 = x1_handles.Outport(1);
Simulink.sdi.markSignalForStreaming(x1,'on');

% arrays used to store ECMS_s and SOC_end values
xc = zeros (3,1);
yc = zeros (3,1);

% plot showing the ECMS_s and SOC_end
subplot (1,2,1);
set(gcf,'position',[x0,y0,width,height])
xlabel({'ECMS\_s',' '})
ylabel('dSOC')
hold on;
subplot (1,2,2);
xlabel('ECMS\_s')
ylabel('SOC')
sgtitle(ECMS_CurrentCycle);
% set model workspace variables
in = ModelSetVariable (mdlName, battChrgMaxValue, SOCinit,battMdl, SOCEndTrg, ctrlMdl);
% get initial 3 ECMS_s points and SOC_end values
[x, y, ECMS_s, SOC_end, solution_found] = dSOC_generate_starting_points (in, ECMS_CurrentValue, SOCEndTrg);

### Starting serial model reference simulation build
### Successfully updated the model reference simulation target for: BattHevP2
### Successfully updated the model reference simulation target for: DrivetrainHevP2
### Successfully updated the model reference simulation target for: HevP2OptimalController
### Successfully updated the model reference simulation target for: HevP2TransmissionController
### Successfully updated the model reference simulation target for: MotMappedP2
### Successfully updated the model reference simulation target for: SiEngineController
### Successfully updated the model reference simulation target for: SiMappedEngine
### Successfully updated the model reference simulation target for: StarterSystemP2

Build Summary

Simulation targets built:

Model                        Action                       Rebuild Reason                                          
==================================================================================================================
BattHevP2                    Code generated and compiled  BattHevP2_msf.mexw64 does not exist.                    
DrivetrainHevP2              Code generated and compiled  DrivetrainHevP2_msf.mexw64 does not exist.              
HevP2OptimalController       Code generated and compiled  HevP2OptimalController_msf.mexw64 does not exist.       
HevP2TransmissionController  Code generated and compiled  HevP2TransmissionController_msf.mexw64 does not exist.  
MotMappedP2                  Code generated and compiled  MotMappedP2_msf.mexw64 does not exist.                  
SiEngineController           Code generated and compiled  SiEngineController_msf.mexw64 does not exist.           
SiMappedEngine               Code generated and compiled  SiMappedEngine_msf.mexw64 does not exist.               
StarterSystemP2              Code generated and compiled  StarterSystemP2_msf.mexw64 does not exist.              

8 of 8 models built (0 models already up to date)
Build duration: 0h 11m 41.173s
x1 = 3.430000, y1 = 76.501288 
### Starting serial model reference simulation build
### Model reference simulation target for BattHevP2 is up to date.
### Model reference simulation target for DrivetrainHevP2 is up to date.
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### Model reference simulation target for HevP2OptimalController is up to date.
### Model reference simulation target for HevP2TransmissionController is up to date.
### Model reference simulation target for MotMappedP2 is up to date.
### Model reference simulation target for SiEngineController is up to date.
### Model reference simulation target for SiMappedEngine is up to date.
### Model reference simulation target for StarterSystemP2 is up to date.

Build Summary

0 of 8 models built (8 models already up to date)
Build duration: 0h 0m 23.209s
x2 = 3.861437, y2 = 80.150757 
### Starting serial model reference simulation build
### Model reference simulation target for BattHevP2 is up to date.
### Model reference simulation target for DrivetrainHevP2 is up to date.
### Model reference simulation target for HevP2OptimalController is up to date.
### Model reference simulation target for HevP2TransmissionController is up to date.
### Model reference simulation target for MotMappedP2 is up to date.
### Model reference simulation target for SiEngineController is up to date.
### Model reference simulation target for SiMappedEngine is up to date.
### Model reference simulation target for StarterSystemP2 is up to date.

Build Summary

0 of 8 models built (8 models already up to date)
Build duration: 0h 0m 13.347s
x3 = 4.422918, y3 = 82.791282 
### Starting serial model reference simulation build
### Model reference simulation target for BattHevP2 is up to date.
### Model reference simulation target for DrivetrainHevP2 is up to date.
### Model reference simulation target for HevP2OptimalController is up to date.
### Model reference simulation target for HevP2TransmissionController is up to date.
### Model reference simulation target for MotMappedP2 is up to date.
### Model reference simulation target for SiEngineController is up to date.
### Model reference simulation target for SiMappedEngine is up to date.
### Model reference simulation target for StarterSystemP2 is up to date.

Build Summary

0 of 8 models built (8 models already up to date)
Build duration: 0h 0m 13.609s
x(4) = 4.732032, y(4) = 84.960746 

if (solution_found == 0)
    
    for i = 1 : maxIterat
        
        [yy, II] = sort(y,'ascend'); % sort the x, y array for plotting
        xx = x(II);
        subplot (1,2,2)
        if (i == 1); plot(xx,yy,'b--o','LineWidth',2); end
        if (i == 2); plot(xx,yy,'g--o','LineWidth',2); end
        if (i == 3); plot(xx,yy,'r--o','LineWidth',2); end
        if (i == 4); plot(xx,yy,'y--o','LineWidth',2); end
        xlabel('ECMS\_s')
        ylabel('SOC')
        hold off

7 Powertrain Blockset Examples

7-20



        % solve second order equation to get z = ECMS_s corresponds to y = SOCEndTrg
        

SOCEndTrg = SOCinit = ax2 + bx + c, where a, b, c satisfies yi = axi
2 + bxi + c, 1 ≤ i ≤ 3 . with

x1 = ECMSs
(1), y1 = SOCend(ECMSs

(1)), x2 = ECMSs
(2), y2 = SOCend(ECMSs

(2)), x3 = ECMSs
(3), y3 = SOCend(ECMSs

(3)) .

        [z] = Second_order_roots (x, y, SOCEndTrg);
        in = in.setVariable("ECMS_s_tune", z);
        [SOC_end, dSOC] =dSOCsim_v1(in);
        subplot (1,2,1);
        plot(z,dSOC,'bs','MarkerSize',15)
        hold on
        fprintf ('i= %u, ECMS_s = %f, SOC_end = %f \n',i, z, SOC_end);
        fprintf ('i= %u, x1 = %f, x2 = %f, x3 = %f, \n',i, x(1), x(2), x(3));
        fprintf ('i= %u, y1 = %f, y2 = %f, y3 = %f, \n',i, y(1), y(2), y(3));
        
        if (abs(SOC_end - SOCEndTrg) <= 1) % check if a solution is found
            ECMS_s = z;
            x(1) = ECMS_s;
            y(1) = SOC_end;
            solution_found = 1;
            break;
        end
        
        xc(1:3) = x (1:3); yc(1:3) = y (1:3); 
        x(1) = z; y(1) = SOC_end; % since z and SOC_end are new points, we use them and put into x(1), y(1)
        [yb, II] = sort(yc,'ascend'); % sort the array for processing
        xb = xc(II);
        
        % begin the process to pick other two points from the original 3 point
        % xb(1:3), yb(1:3)
        
        if (y(1) > SOCEndTrg) % y(1)> SOCEndTrg, we need to pick other points < SOCEndTrg
            if ((yb(2) < SOCEndTrg) && (SOCEndTrg < yb(3)))  % yb(2) < SOCEndTrg, pick yb(2)
                x(2) = xb(2); y(2) = yb(2);
                if (abs(yb(1)-SOCEndTrg) < abs(yb(3)-SOCEndTrg)) % pick last point from xb(1), and xb(3), according to shortest distance to SOCEndTrg
                    x(3) = xb(1); y(3) = yb(1);
                else
                    x(3) = xb(3); y(3) = yb(3);
                end
            end
            if ((yb(1) < SOCEndTrg) && (SOCEndTrg < yb(2))) % yb(1) < SOCEndTrg, pick yb(1)
                x(2) = xb(1); y(2) = yb(1);
                if (abs(yb(2)-SOCEndTrg) < abs(yb(3)-SOCEndTrg)) % pick last point from xb(2) and xb(3), according to shortest distance to SOCEndTrg
                    x(3) = xb(2); y(3) = yb(2);
                else
                    x(3) = xb(3); y(3) = yb(3);
                end
            end
        end
        if (y(1) < SOCEndTrg) % y(1)< SOCEndTrg, we need to pick other points > SOCEndTrg
            if ((yb(2) < SOCEndTrg) && (SOCEndTrg < yb(3))) % yb(3) > SOCEndTrg, pick yb(3)
                x(2) = xb(3); y(2) = yb(3);
                if (abs(yb(1)-SOCEndTrg) < abs(yb(2)-SOCEndTrg)) % pick last point from xb(1) and xb(2), according to shortest distance to SOCEndTrg
                    x(3) = xb(1); y(3) = yb(1);
                else
                    x(3) = xb(2); y(3) = yb(2);
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                end
            end
            if ((yb(1) < SOCEndTrg) && (SOCEndTrg < yb(2))) % yb(2) > SOCEndTrg, pick this point
                x(2) = xb(2); y(2) = yb(2);
                if (abs(yb(1)-SOCEndTrg) < abs(yb(3)-SOCEndTrg)) % pick last point from xb(1) and xb(3), according to shortest distance to SOCEndTrg
                    x(3) = xb(1); y(3) = yb(1);
                else
                    x(3) = xb(3); y(3) = yb(3);
                end
            end
        end
    end
    
    y_abs = abs(y-SOCEndTrg);
    [yb, II] = sort(y_abs,'ascend');
    xb = x(II);
    ECMS_s = xb (1);
    
end

hold off;

toc;

Elapsed time is 1113.941571 seconds.

if (solution_found == 1)
    fprintf ('Search converged. ECMS_s parameter updated in model. \n');
    fprintf ('ECMS_s = %f, SOCEndTrg = %f, SOC_end = %f \n',ECMS_s, SOCEndTrg, SOC_end);
end

Search converged. ECMS_s parameter updated in model. 

ECMS_s = 4.732032, SOCEndTrg = 85.000000, SOC_end = 84.960746 
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if (solution_found == 0)
    fprintf ('Search failed to converge. An approximate ECMS_s is updated in the model. \n');
    fprintf ('Refer to the Troubleshooting section of the example page for recommendations. \n');
end

ECMS_s_tune = ECMS_s;
% reset model
Simulink.sdi.markSignalForStreaming(x1,'off');
load_system(ctrlMdl)
set_param(ctrlMdl+"/ECMS",'ECMS_s',baseParamName)
save_system(mdlName,[],'SaveDirtyReferencedModels','on');

% update model and sim
hws = get_param(ctrlMdl, 'modelworkspace');% get the workspace
hws.assignin('ECMS_s',ECMS_s);
save_system(ctrlMdl,[],'SaveDirtyReferencedModels','on');
open_system(mdlName);
load_system(battMdl);
battChrgMaxValue_obj = getVariable(get_param(battMdl,'modelworkspace'),'BattChargeMax');
if  isnumeric(battChrgMaxValue_obj); battChrgMaxValue = battChrgMaxValue_obj; end
if ~isnumeric(battChrgMaxValue_obj); battChrgMaxValue = battChrgMaxValue_obj.Value; end
in = in.setVariable('BattCapInit', battChrgMaxValue*SOCinit,'Workspace',battMdl);
in = in.setVariable('SOCTrgt', SOCEndTrg,'Workspace',ctrlMdl);
in = in.setVariable('SOCmin', max(SOCEndTrg-20,20.5),'Workspace',ctrlMdl);
in = in.setVariable('SOCmax', min(SOCEndTrg+20,100),'Workspace',ctrlMdl);
set_param(ctrlMdl+"/ECMS",'ECMS_s',"ECMS_s");
save_system(battMdl);
save_system(ctrlMdl);
% sim(in);
% open_system(mdlName+"/Visualization/Performance and FE Scope");

function in = ModelSetVariable (mdlName, battChrgMaxValue, SOCinit, battMdl, SOCEndTrg, ctrlMdl) 
in = Simulink.SimulationInput(mdlName);
in = in.setVariable('BattCapInit', battChrgMaxValue*SOCinit,'Workspace',battMdl);
in = in.setVariable('SOCTrgt', SOCEndTrg,'Workspace',ctrlMdl);
in = in.setVariable('SOCmin', max(SOCEndTrg-20,20.5),'Workspace',ctrlMdl); 
in = in.setVariable('SOCmax', min(SOCEndTrg+20,100),'Workspace',ctrlMdl);
end

function [x_out, y_out, ECMS_s, SOC_end, solution_found] = dSOC_generate_starting_points (in, ECMS_CurrentValue, SOCEndTrg)

x_out = zeros (3,1);
y_out = zeros (3,1);
x = zeros (4,1);
y = zeros (4,1);

solution_found = 0;
ECMS_s = ECMS_CurrentValue;
alpha = 0.8;

tol = 1;

x1 = ECMS_CurrentValue;  % use current ECMS_s value as the starting point
in = in.setVariable("ECMS_s_tune", x1);
[SOC_end,  dSOC] =dSOCsim_v1(in);  %evaluate x1 results
y1 = SOC_end;
subplot (1,2,1);
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plot(x1,dSOC,'bs','MarkerSize',15)
hold on
fprintf ('x1 = %f, y1 = %f \n',x1, y1);
if (abs(y1 - SOCEndTrg) <= tol)  % check if a solution found
    ECMS_s  = x1;
    SOC_end = y1;
    solution_found = 1;
end

if ((y1 > SOCEndTrg) && (solution_found == 0))
    x2 = x1 - ECMS_S_dis_up (x1, y1, SOCEndTrg); % use a decreased ECMS_s value as x2
    in = in.setVariable("ECMS_s_tune", x2);
    [SOC_end, dSOC] =dSOCsim_v1(in);
    y2 = SOC_end;
    subplot (1,2,1);
    plot(x2,dSOC,'bs','MarkerSize',15)
    hold on
    fprintf ('x2 = %f, y2 = %f \n',x2, y2);
    if (abs(y2 - SOCEndTrg) <= tol)  % check if a solution found
        ECMS_s  = x2;
        SOC_end = y2;
        solution_found = 1;
    end
    if ((y2 > SOCEndTrg) && (solution_found == 0)) % y2 is still too high
        y3_try = SOCEndTrg - 2; % set a lower SOC end trial to it will be easier to get y2 < SOC_EndTrg
        x3 = x1 + alpha*(y3_try - y1)*(x2-x1)/(y2-y1); % use x1, y1, x2, y2 to fit a linear function

x = x1 + α
y − y1
y2− y1

× (x2− x1) such that x = x1 at y = y1, and x = αx2 + (1− α)x1 at y = y2

        dx = ECMS_S_dis_up (x2, y2, SOCEndTrg); % get a pre-defined decrease value
        x3 = min (x3, x2 -   dx);  % upper limit for x3
        x3 = max (x3, x2 - 2*dx);  % lower limit for x3
        in = in.setVariable("ECMS_s_tune", x3); % set the x3 value as ECMS_s
        [SOC_end,  dSOC] =dSOCsim_v1(in);       % evaluate
        y3 = SOC_end;
        subplot (1,2,1);
        plot(x3,dSOC,'bs','MarkerSize',15)
        hold on
        fprintf ('x3 = %f, y3 = %f \n',x3, y3);
        if (abs(y3 - SOCEndTrg) <= tol) % check if a solution is found
        ECMS_s  = x3;
        SOC_end = y3;
        solution_found = 1;
        end
        if (solution_found == 0)
            x_out(1) = x1; x_out(2) = x2; x_out(3) = x3; y_out(1) = y1; y_out(2) = y2; y_out(3) = y3; % output 3 points
        end
    end
    if (solution_found == 0)
        if ((y2 > SOCEndTrg) && (y3 >= SOCEndTrg)) % if y3 is still greater than SOCEndTrg, lower it again
            for it_again = 1 : 10
                [x(4)] = Second_order_roots (x_out, y_out, SOCEndTrg - 2);  % decrease again
                dx = ECMS_S_dis_up (x_out (3), y_out (3), SOCEndTrg);   % standard decrease
                x(4) = max (x(4), x_out (3) -   dx);             % make it higher than the standard increase
                x(4) = min (x(4), x_out (3) - 2*dx);             % limit the increase to 2 times the standard
                in = in.setVariable("ECMS_s_tune", x(4));
                [SOC_end, ~] = dSOCsim_v1(in);
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                ECMS_s = x(4);
                y(4) = SOC_end;
                x_out (1) = x_out (2);   y_out (1) = y_out (2);
                x_out (2) = x_out (3);   y_out (2) = y_out (3);
                x_out (3) = x(4);        y_out (3) = SOC_end;
                if (abs(y(4) - SOCEndTrg) <= tol); break; end
                if (SOC_end <= SOCEndTrg); break; end
            end
            if (abs(y(4) - SOCEndTrg) <= tol)
                ECMS_s  = x(4);
                SOC_end = y(4);
                solution_found = 1;
            end
        end
    end

    if ((y2 < SOCEndTrg) && (solution_found == 0)) % y2 is lower than SOCEndTrg while y1 is greater than SOCEndTrg
        x_min = min (x1, x2); x_max = max (x1, x2); y_min = min(y1, y2); y_max = max (y1, y2); % sort the min and max
        w_min = abs (y_min - SOCEndTrg) / (abs(y_min - SOCEndTrg) + abs(y_max - SOCEndTrg)); % weighting factor
        x3 = (1-w_min) * x_min + w_min * x_max; % x3 is a weighted interpolation between x1 and x2
        in = in.setVariable("ECMS_s_tune", x3);
        [SOC_end,  dSOC] =dSOCsim_v1(in);
        y3 = SOC_end;
        subplot (1,2,1);
        plot(x3,dSOC,'bs','MarkerSize',15)
        hold on
        fprintf ('x3 = %f, y3 = %f \n',x3, y3);
        if (abs(y3 - SOCEndTrg) <= tol)
        ECMS_s  = x3;
        SOC_end = y3;
        solution_found = 1;
        end
    end
    if (solution_found == 0)
        x_out(1) = x1; x_out(2) = x2; x_out(3) = x3; y_out(1) = y1; y_out(2) = y2; y_out(3) = y3; % output 3 points
    end
end

if ((y1 < SOCEndTrg) && (solution_found == 0)) % y1 < SOCEndTrg
    x2 = x1 + ECMS_S_dis_up (x1, y1, SOCEndTrg); % use a higher ECMS_s value as x2
    in = in.setVariable("ECMS_s_tune", x2);
    [SOC_end, dSOC] =dSOCsim_v1(in);
    y2 = SOC_end;
    subplot (1,2,1);
    plot(x2,dSOC,'bs','MarkerSize',15)
    fprintf ('x2 = %f, y2 = %f \n',x2, y2);
    if (abs(y2 - SOCEndTrg) <= tol)
        ECMS_s  = x2;
        SOC_end = y2;
        solution_found = 1;
    end
    if ((y2 < SOCEndTrg) && (solution_found == 0)) % x2 is not high enough
        y3_try = SOCEndTrg + 2;                    % set a higher SOC target
         

x = x1 + α
y − y1
y2− y1

(x2− x1), x = x1, at y = y1, x = αx2 + (1− α)x1 at y = y2,
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        x3 = x1 + alpha*(y3_try - y1)*(x2-x1)/(y2-y1); % use x1, y1, x2, y2 as a linear prdeiction
        dx = ECMS_S_dis_up (x2, y2, SOCEndTrg);    % standard increase
        x3 = max (x3, x2 +   dx);                  % lower limit for x3
        x3 = min (x3, x2 + 2*dx);                  % upper limit for x3
        in = in.setVariable("ECMS_s_tune", x3);
        [SOC_end, dSOC] =dSOCsim_v1(in);
        y3 = SOC_end;
        subplot (1,2,1);
        plot(x3,dSOC,'bs','MarkerSize',15)
        fprintf ('x3 = %f, y3 = %f \n',x3, y3);
        if (abs(y3 - SOCEndTrg) <= tol)
            ECMS_s  = x3;
            SOC_end = y3;
            solution_found = 1;
        end
        if (solution_found == 0)
            x_out(1) = x1; x_out(2) = x2; x_out(3) = x3; y_out(1) = y1; y_out(2) = y2; y_out(3) = y3; % output 3 points
        end
    end
    if (solution_found == 0)
        if ((y2 < SOCEndTrg) && (y3 <= SOCEndTrg))  % y3 is still not high enough
            for it_again = 1 : 10
                [x(4)] = Second_order_roots (x_out, y_out, SOCEndTrg + 2);  % increase again
                dx = ECMS_S_dis_up (x_out (3), y_out (3), SOCEndTrg);   % standard increase
                x(4) = max (x(4), x_out (3) +   dx);             % make it higher than the standard increase
                x(4) = min (x(4), x_out (3) + 2*dx);             % limit the increase to 2 times the standard
                in = in.setVariable("ECMS_s_tune", x(4));
                [SOC_end, dSOC] = dSOCsim_v1(in);
                ECMS_s = x(4);
                y(4) = SOC_end;
                x_out (1) = x_out (2);   y_out (1) = y_out (2);
                x_out (2) = x_out (3);   y_out (2) = y_out (3);
                x_out (3) = x(4);        y_out (3) = SOC_end;
                if (SOC_end >= SOCEndTrg); break; end
                if (abs(y(4) - SOCEndTrg) <= tol); break; end
            end
            subplot (1,2,1);
            plot(x(4),dSOC,'bs','MarkerSize',15)
            fprintf ('x(4) = %f, y(4) = %f \n',x(4), y(4));
            if (abs(y(4) - SOCEndTrg) <= tol)
                ECMS_s  = x(4);
                SOC_end = y(4);
                solution_found = 1;
            end
        end
    end
    if ((y2 > SOCEndTrg) && (solution_found == 0))  % y2 is good
        x_min = min (x1, x2); x_max = max (x1, x2); y_min = min(y1, y2); y_max = max (y1, y2); % get min and max for x1, x2, y1, y2
        w_min = abs (y_min - SOCEndTrg) / (abs(y_min - SOCEndTrg) + abs(y_max - SOCEndTrg));   % weighted factor
        x3= (1-w_min) * x_min + w_min * x_max;  % get weighted interpolation between x1, and x2
        in = in.setVariable("ECMS_s_tune", x3);
        [SOC_end, dSOC] =dSOCsim_v1(in);
        y3 = SOC_end;
        subplot (1,2,1);
        plot(x3,dSOC,'bs','MarkerSize',15)
        fprintf ('x3 = %f, y3 = %f \n',x3, y3);
        if (abs(y3 - SOCEndTrg) <= tol)
            ECMS_s  = x3;
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            SOC_end = y3;
            solution_found = 1;
        end
    end
    if (solution_found == 0)
        x_out(1) = x1; x_out(2) = x2; x_out(3) = x3; y_out(1) = y1; y_out(2) = y2; y_out(3) = y3; % output three points
    end
end

end

function [SOC_end, dSOC]=dSOCsim_v1(in)

out=sim(in);
% for ii=1:length(out)
    if isempty(out.ErrorMessage)
        SOC=out.logsout.getElement('Battery SOC').Values.Data;
        dSOC=SOC(end)-SOC(1);
        SOC_end = SOC(end);
    else
        dSOC=NaN;
    end
    
end

function dx = ECMS_S_dis_up (ECMS_s, y, SOC_target)

% function computes standard dx = increase/decrease in ECMS_s
% the dx is proportional to the distance between SOC_end (y) and SOC_Target
% also, dx is proportional to ECMS_s, a, c, ff can be adjusted

ff = 0.05;
a  = 0.015;
c = 3.5;
b = ECMS_s / c;   % ECMS_s effect
if (ECMS_s < c-0.1); b = 1; end
dx = a + b * abs(y-SOC_target) * ff;

end

function [z] = Second_order_roots (x, y, y_tar)

solve the equation ytar = az2 + bz + c, with yi = axi
2 + bxi + c, for 1 ≤ i ≤ 3 .

d1 = y(1) / (x(1) - x(2)) / (x(1) - x(3));
d2 = y(2) / (x(2) - x(1)) / (x(2) - x(3));
d3 = y(3) / (x(3) - x(1)) / (x(3) - x(2));

AA = (d1 + d2 + d3);
BB = - (d1 * (x(2) + x(3)) + d2 * (x(1) + x(3)) + d3 * (x(1) + x(2)));
CC = d1 * x(2) * x(3) + d2 * x(1) * x(3) + d3 * x(1) * x(2) - y_tar;

z1 = (-BB + sqrt (BB*BB - 4 * AA * CC)) / 2 / AA;
z = real(z1);
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end

See Also
Equivalent Consumption Minimization Strategy
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Use On-Board Diagnostics to Detect Misfire
This example shows how to introduce, detect, mature, and report misfire events from the SI Core
Engine. The model demonstrates misfire on-board diagnostics (OBD) warnings.

Model

Run Simulation

On the Simulation tab, click Run. As the simulation runs, diagnostic trouble codes appear on the MIL
Light display. P0300 is a general warning for a misfire issue in one or more cylinders. P0303 indicates
a specific misfire issue with Cylinder 3.

ECU With TPU and Diagnostics

This subsystem detects misfire events, using crankshaft acceleration as an indicator. Navigate to
autoblkSICoreOBDMisfire > ECU With TPU and Diagnostics > TPU Level Misfire
Detection. Open the Diagnosis Parameters block. You can modify the OBD threshold calibrations for
detection and maturation.
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OBD Breakout Box

This subsystem defines misfire events to inject into the simulation. Navigate to
autoblkSICoreOBDMisfire > OBD Breakout Box > Injector Pulsewidth Fault
Injection. Open the Misfire Events block. You can modify the misfire fault injection timing.

Engine Plant With Sensors and Actuators

The SI Core Engine computes cylinder pressure as a function of crank angle. The Crank VRS Sensor
and Measurement Circuit simulates the 58-tooth wheel that tracks the progression of the 4-stroke
engine cycle.
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Cranktrain block

Open the Cranktrain block to modify the engine cranktrain geometry and dynamics.

See Also
SI Core Engine
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Read and Write Block Parameters to Excel
If you manage model data in external files, you can use scripts to pass the data between the data file
and a Simulink® model. This example shows you how to read block parameter data from and write
parameter data to an Excel® data file. Specifically, the example provides functions that read and
write Mapped SI Engine parameter data. You can adapt the functions to read and write parameters
for additional blocks.

Open Mapped SI Engine Block

Open the Mapped SI Engine block in the hybrid electric vehicle P2 reference application.

Open the Hybrid Electric Vehicle P2 Reference Application

workDir = pwd;
autoblkHevP2Start;
cd(workDir);

Set a variable equal to the block path.

bp = 'SiMappedEngine/Mapped SI Engine'; % block path

Open Mapped SI Engine Block

In the HevP2ReferenceApplication model, navigate to Passenger Vehicle > Ideal Mapped
Engine > SiMappedEngine . Open the Mapped SI Engine block. The Breakpoints for
commanded torque, Breakpoints for engine speed input, Number of cylinders, Crank
revolutions per power stroke, and Total displaced volume parameters are set to workspace
variables.

The functions in the example overwrite the workspace variables with the values in the data file.

Specify Data File Configuration

First, specify the file name. This example file SiEngineData.xlsx contains three sheets. The first
sheet contains scalar values for commanded torque breakpoints, breakpoints for engine speed input
breakpoints, number of cylinders, crank revolutions, and total displaced volume. The second sheet
contains a table values for the brake torque map. The third sheet contains table values for the fuel
torque map.

fileName = 'SiEngineData.xlsx';

Note that the first sheet in the file specifies the Number of cylinders, Ncyl parameter as 6.
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Next, define the configuration data for the engine subsystem. This example sets a configuration for
double variables of size scalar, vector, or a 2D array.

• Scalar data structure specifies the data on the first sheet.
• Vector data structure specifies the data on the second sheet.
• Array data structure specifies the data on the third sheet.

engData = struct(); % engine parameter data

% Scalar data
engData.Ncyl = struct('xlSheet','Main', 'xlRange','C7:C7', 'slBlockPath',bp, 'slBlockParam','Ncyl');
engData.Cps = struct('xlSheet','Main', 'xlRange','C8:C8', 'slBlockPath',bp, 'slBlockParam','Cps');
engData.Vd = struct('xlSheet','Main', 'xlRange','C9:C9', 'slBlockPath',bp, 'slBlockParam','Vd');

% Vector data
engData.t_bpt = struct('xlSheet','Main', 'xlRange','C3:R3', 'slBlockPath',bp, 'slBlockParam','f_tbrake_t_bpt');
engData.n_bpt = struct('xlSheet','Main', 'xlRange','C4:R4', 'slBlockPath',bp, 'slBlockParam','f_tbrake_n_bpt');

% 2D array data
engData.torque = struct('xlSheet','Brake Torque', 'xlRange','B2:Q17', 'slBlockPath',bp, 'slBlockParam','f_tbrake');
engData.fuel = struct('xlSheet','Fuel Map', 'xlRange','B2:Q17', 'slBlockPath',bp, 'slBlockParam','f_fuel');

Read Mapped SI Engine Block Parameters

Update the Mapped SI Engine block to the values specified in the data file.

Read Data File and Update Parameters

Use this code to read the data file and update the Mapped SI Engine block parameters.

f = fields(engData);
for idx = 1:length(f)
    try
        var = getfield(engData, f{idx});
        % read value from Excel
        val = readmatrix(fileName, 'Sheet',var.xlSheet, 'Range',var.xlRange);
        % open Simulink model
        mdl = fileparts(var.slBlockPath);
        open_system(mdl);
        % set parameter value and save model
        set_param(var.slBlockPath, var.slBlockParam, mat2str(val));
        save_system(mdl);
    catch ME
        % return any error info
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        disp(getReport(ME, 'extended', 'hyperlinks', 'on'))
        fprintf('\nContinuing to next variable...\n\n');
    end
end
fprintf('Done writing values to Simulink\n')

Done writing values to Simulink

Open Mapped SI Engine Block

In the HevP2ReferenceApplication model, navigate to Passenger Vehicle > Ideal Mapped
Engine > SiMappedEngine. Open the Mapped SI Engine block. The Breakpoints for commanded
torque, Breakpoints for engine speed input, Number of cylinders, Crank revolutions per
power stroke, and Total displaced volume parameters are set to the values specified in the data
file. Confirm that the Brake torque map and Fuel flow map parameters are the same as the
values specified in the data file.

Write Modified Parameters to Data File

In the Mapped SI Engine block, change the Number of cylinders, NCyl parameter from 6 to 8. Click
Apply. Save the model.

Alternatively, use this code to update the parameter and save the model.

set_param(bp,'Ncyl','8');
save_system('SiMappedEngine');

Write Parameter Data to File

First, create a copy of the data file. Write the modified parameter data to the copy of the data file.

copyfile('SiEngineData.xlsx','SiEngineDataCopy.xlsx','f');
fileName = 'SiEngineDataCopy.xlsx';
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Next, use this code to write the Mapped SI Engine block Breakpoints for commanded torque,
Breakpoints for engine speed input, Number of cylinders, Crank revolutions per power
stroke, Total displaced volume, Brake torque map, and Fuel flow map parameters to the data
file.

% Read data from Simulink model then write to Excel
f = fields(engData);
for idx = 1:length(f)
    try
        var = getfield(engData, f{idx});
        % open Simulink model
        mdl = fileparts(var.slBlockPath);
        open_system(mdl);
        % read value from Simulink
        val = str2num(get_param(var.slBlockPath, var.slBlockParam));
        % write value to Excel
        writematrix(val, fileName, 'Sheet',var.xlSheet, 'Range',var.xlRange);
    catch ME
        % return any error info
        disp(getReport(ME, 'extended', 'hyperlinks', 'on'))
        fprintf('\nContinuing to next variable...\n\n');
    end
end
fprintf('Done writing values to Excel\n')

Done writing values to Excel

Open the file with the modified data. Confirm that the number of cylinders in the data file is 8.

See Also
Mapped SI Engine

Related Examples
• “HEV P2 Reference Application” on page 7-7
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Generate Drive Cycles for Real Driving Emissions
Real Driving Emissions (RDE) is an emissions standard required by the European Union. To meet this
standard, a car is driven on public roads and over a wide range of different conditions. Specific
equipment installed on the vehicle, the Portable Emission Measuring System (PEMS), collects data to
verify that legislative caps for pollutants such as NOx are not exceeded.

This example shows how to generate an RDE-compliant trip.

RDE trip parameters

Instantiate an RDE object

DriveCycles = RDE.DriveCycles; % create RDE object

Sampling interval [s]

DriveCycles.dt = 1; % sampling interval [s]

Velocity threshold for stop condition [m/s]

DriveCycles.StopSpeedTh = 1/3.6; % stop velocity threshold [m/s]

RDE Trip Specifications

RDE trips cover three types of operation: urban, rural, and motorway. All datasets with v ≤ 60 km/h
belong to the ‘urban’ speed bin, all datasets with 60 km/h < v ≤ 90 km/h belong to the ‘rural’ speed
bin and all datasets with v > 90 km/h belong to the ‘motorway’ speed bin. These classifications are
based purely on speed. The urban/rural/motorway mix, based on the speed definition, should be
evenly distributed for each category within a 10% tolerance. The table shows the distance and speed
specifications for each urban, rural, and motorway part of the RDE test.
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Boundary Conditions for the RDE Tests

In addition to specifying the trip characterization, other defined boundary conditions include ambient
conditions, stop times, maximum speed, and altitude. A set of additional dynamic boundary conditions
has been added for the second RDE legislative package to exclude driving that could be regarded as
too smooth or too aggressive, based on indicators such as speed and acceleration. The table shows
the dynamic boundary conditions for the RDE tests.
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NOTE: The present RDE package does not generate altitude or temperature data.

RDE Parameters

Urban/rural/motorway velocity range [m/s]

Parameter defined in the RDE legislation at chapter: 6.3.1, 6.4.1, 6.4.2, 6.5.1

DriveCycles.OperationModeBoundaries = [60 90]/3.6; % Boundaries between urban, rural, motorway [m/s]

Allowed distance normalized percentage for the urban part of the trip

Parameter defined in the RDE legislation at chapter: 6.6.1

DriveCycles.UrbanRatioRange = [0.29 0.44]; % Allowed distance normalized percentage for the urban part of the trip []

Allowed distance normalized percentage for the rural part of the trip

Parameter defined in the RDE legislation at chapter: 6.6.2

DriveCycles.RuralRatioRange = [0.23 0.43]; % Allowed distance normalized percentage for the rural part of the trip []

Allowed distance normalized percentage for the motorway part of the trip

Parameter defined in the RDE legislation at chapter: 6.6.3
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DriveCycles.MotorwayRatioRange = [0.23 0.43]; % Allowed distance normalized percentage for the motorway part of the trip []

Parameters defined in the RDE legislation at chapter: 6.7.1

Usual max velocity [m/s] (can be occasionally higher, for overpassing, etc.)

DriveCycles.MotorwayUsualMaxSpeed = 145/3.6; % Usual max velocity [m/s] (can be occasionally higher, for overpassing, etc.)

Time ratio limit for higher velocities

DriveCycles.MotorwayAbsoluteSpeedTimeRatio = 0.03; % Time ratio limit for higher velocities []

Absolute max velocity [m/s] (cannot be higher than this)

DriveCycles.MotorwayAbsoluteMaxSpeed = 160/3.6; % Absolute max velocity [m/s] (cannot be higher than this)

Urban allowed speed range.

Parameter defined in the RDE legislation at chapter: 6.8.1

DriveCycles.UrbanAverageSpeedRange = [15 40]/3.6; % urban allowed speed range [m/s]

Urban stop normalized percentage range.

Parameter defined in the RDE legislation at chapter: 6.8.2

DriveCycles.UrbanStopRatioRange = [0.06 0.3]; % Urban stop normalized percentage range []

Urban min stop time and number of stop events.

Parameter defined in the RDE legislation at chapter: 6.8.3

DriveCycles.UrbanMinStopTime = 10; % Urban min stop time [s]
DriveCycles.UrbanMinStopCount = 2; % Urban min stop occurrences []

Motorway min velocity and time allowed for min velocity.

Parameter defined in the RDE legislation at chapter: 6.9.1

DriveCycles.MotorwayUsualMinSpeed = 100/3.6; % Motorway min velocity [m/s]
DriveCycles.MotorwayUsualMinSpeedTime = 5*60; % Time allowed for min velocity [s]

Range for RDE trip duration

Parameter defined in the RDE legislation at chapter: 6.10.1

DriveCycles.TripDurationRange = [90 120]*60; % Allowed total trip duration range [s]

Min distance for urban, rural, and motorway parts

Parameters defined in the RDE legislation at chapter: 6.12

DriveCycles.UrbanMinDistance = 16000; % Min distance for urban part [m]
DriveCycles.RuralMinDistance = 16000; % Min distance for rural part [m]
DriveCycles.MotorwayMinDistance = 16000; % Min distance for motorway part [m]

Rural and motorway average speed range

DriveCycles.RuralAverageSpeedRange = [60 90]/3.6; % Rural average speed range [m/s]
DriveCycles.MotorwayAverageSpeedRange = [90 145]/3.6; % Motorway average speed range [m/s]
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Dynamic Boundary Conditions Used by the Relative Positive Acceleration (RPA) and VA95

These conditions are defined in order to exclude driving that could be regarded as too smooth or too
aggressive, based on indicators such as speed and acceleration.

To be valid, each urban, rural, and motorway section of an RDE trip must be below the VA95
constraint line and above the RPA constraint line.

The constraints are defined as below
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RPA has units m/s^2 or kWs/(kg*km) and positive acceleration means values greater than 0.1 m/s^2.

VA95 is the 95th percentile of the product of vehicle speed per positive acceleration greater than 0.1
m/s^2 and has units of m^2/s^3 or W/kg, similar to a power to mass ratio.

Parameters for VA95 indicator verification (used in calcVa95Boundary)

Parameters defined in the RDE legislation at section 4.1.1 (VERIFICATION OF TRIP VALIDITY)

DriveCycles.VA95VelocityThreshold = 74.6/3.6; % m/s
DriveCycles.VA95BoundarySpeedCoeff1 = 0.136; % units equivalent to m/s^2
DriveCycles.VA95BoundaryBias1  = 14.44; %W/kg
DriveCycles.VA95BoundarySpeedCoeff2 = 0.0742; % units equivalent to m/s^2
DriveCycles.VA95BoundaryBias2  = 18.966; % W/kg

Parameters for RPA verification (used in calcRpaBoundary)

Parameters defined in the RDE legislation at section 4.1.2 (VERIFICATION OF TRIP VALIDITY)

DriveCycles.RPAVelocityThreshold = 94.05/3.6; % m/s
DriveCycles.RPABoundarySpeedCoeff = -0.0016; % units equivalent to 1/s
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DriveCycles.RPABoundaryBias = 0.1755; % m/s^2
DriveCycles.RPALowerBound = 0.025; % m/s^2

RDE generator parameters

DriveCycles.ShapeParameter = 1; % Velocity generator uses the gamma PDF and this is the PDF's tuning parameter

DriveCycles.SmoothingMethod = ; % velocity using MATLAB smooth function
DriveCycles.SmoothingWindowLength = 5; % window length

Number of RDE trips to be generated

DriveCycles.NTrips = 4; % number of RDE trips

Number of tries to generate a valid RDE trip

DriveCycles.NumberOfIterations = 10000; % iteration find valid trip limit

Output folder for RDE data

DriveCycles.OutputFolder = fullfile(pwd(), 'results'); % output folder location

Generate RDE trips

This will also save the timeseries data as separate CSV files.

DriveCycles.generateDriveCycles(); % generated the results 

RDE compliant drive cycle successfully generated in 81 iterations
RDE compliant drive cycle successfully generated in 92 iterations
RDE compliant drive cycle successfully generated in 33 iterations
RDE compliant drive cycle successfully generated in 120 iterations

To view and check the drive cycle files, open them using an application available on your platform.
For example, on the Windows® platform, use the command winopen("./results/
drive_cycle_1.csv").

Plot the generated RDE trips

DriveCycles.plotDriveCycles % plot the results 
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References

The RDE legislation has been divided into four legislative packages, covering various areas such as
specifications for measurement equipment, trip definitions, and boundary conditions.

RDE legislative packages:

RDE package 1

Basic features of the RDE test, such as characterization of the RDE trip, the vehicle family concept,
description of the data evaluation tools, technical requirement of the PEMS equipment, and reporting
obligations.

Official Journal of the European Union, L 82, 31 March 2016. 2016/427

RDE package 2

Determination of the conformity factors and the timetable for RDE implementation. Technical
features include the introduction of dynamic boundary conditions and a limit for altitude gain
together with a detailed approach to calculating it.

Official Journal of the European Union, L 109, 26 April 2016. 2016/646

RDE package 3

Particulate number measurement along, provisions for hybrids, and a procedure to include cold starts
and regeneration events in the RDE test.
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Get Started with the Virtual Vehicle Composer
The Virtual Vehicle Composer app enables you to configure and build a virtual vehicle that you can
use for system-level performance analysis, including component sizing, fuel economy, drive cycle
tracking, software integration testing, and hardware-in-the-loop (HIL) testing. Use the app to quickly
enter your vehicle parameter data, build a virtual vehicle model, run test scenarios, and analyze the
results.

The virtual vehicle model contains the blocks and reference application subsystems available with
Powertrain Blockset and Vehicle Dynamics Blockset™. You can use the app to quickly configure the
architecture and enter parameter data.

Open the Virtual Vehicle Composer App
To open the app, do either of the following:

• MATLAB Toolstrip: On the Apps tab, under Automotive, click the Virtual Vehicle Composer

app icon .
• MATLAB command prompt: Enter virtualVehicleComposer.

Virtual Vehicle Composer Workflow
To build, operate, and analyze your virtual vehicle, use the Virtual Vehicle Composer app
Composer tab options to follow these workflow steps. To get started with an example, follow the
workflow steps to build a four-wheeled electric vehicle (EV), test it with FTP–75 drive cycle, and
analyze the results.

Step Button Description
1 “Configure Virtual

Vehicle Data” on page
8-4

Vehicle
Data

Specify the vehicle architecture, dynamics
model, chassis, powertrain, and driver. For each
selection, enter the vehicle parameter data.

2 “Configure Virtual
Vehicle Scenario and
Test” on page 8-7

Vehicle
Scenario
and Test

Select the virtual vehicle test scenario. Options
include a drive cycle scenario for fuel economy
and energy management analysis.

3 “Configure Virtual
Vehicle Data Logging”
on page 8-8

Data
Logging
Editor

Select the model signal data to log when
operating your virtual vehicle. Options include
vehicle position, velocity, and acceleration.

4 “Build Virtual Vehicle”
on page 8-10

Virtual
Vehicle

Build your virtual vehicle. When you build, the
Virtual Vehicle Composer creates a Simulink
model that contains the vehicle architecture and
data that you specified in the configuration
steps.

5 “Operate Virtual
Vehicle” on page 8-11

Run Test
Plan

Simulate your model in the scenario that you
specified in step 2.

6 “Analyze Virtual
Vehicle” on page 8-12

Simulation
Data
Inspector

Use the Simulation Data Inspector to view and
inspect the simulation signals.
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Configure Virtual Vehicle Data
Use the Virtual Vehicle Composer app to configure your virtual vehicle. First, specify the vehicle
architecture, dynamics model, chassis, powertrain, driver, and environment. For each selection, enter
the vehicle parameter data. For this example, configure an electric vehicle (EV).

In the Virtual Vehicle Composer app, on the Composer tab, click New. The app opens a default
virtual vehicle template and creates virtual vehicle project files.

Vehicle Architecture and Vehicle Model
To configure the vehicle architecture and vehicle model for your virtual vehicle, on the Vehicle Data
tab, set:

1 PassengerCar > Vehicle Architecture. By default, Vehicle Architecture is set to
Conventional Vehicle. For this example, set it to Electric Vehicle.

2 PassengerCar > Vehicle Model. For this example, set Vehicle Model to Longitudinal
Vehicle Dynamics to configure a model suitable for drive cycle analysis.

• On the Vehicle Data tab, enter the vehicle dynamics parameter data for your virtual vehicle,
including:

• PIntVehMass — Vehicle mass
• PlntVehCGHgtAxl — Vertical distance from center of mass to axle plane
• PlntVehInitLongVel — Initial longitudinal velocity

For this example, use the default parameter values.

Note The virtual vehicle uses the Z-up coordinate system as defined in SAE J670 and ISO 8855. For
more information, see “Coordinate Systems in Vehicle Dynamics Blockset” (Vehicle Dynamics
Blockset).
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Chassis
Use the Chassis parameters to select the tire, brake type, steering system, and suspension systems
for your virtual vehicle. The available options depend on your Vehicle Architecture and Vehicle
Model parameter settings.

For this example, under PassengerCar > Chassis, set:

1 Tire to Longitudinal Tire to configure a tire model suitable for drive cycle analysis.

• On the Vehicle Data tab, enter the tire data for your virtual vehicle, including:

• PlntWhlLdRadius — Loaded radius
• PlntWhlMass — Wheel mass

For this example, use the default parameter values.
2 Brake Type to Disc.

• On the Vehicle Data tab, enter the tire data for your virtual vehicle, including:

• PlntBrkStcFricCff — Static friction coefficient
• PlntBrkKinFricCff — Kinetic friction coefficient

For this example, use the default parameter values.

Powertrain
Use the Powertrain parameters to select the engine, transmission, drivetrain, differential system,
and electrical system parameters for your virtual vehicle. The available options depend on your
Vehicle Architecture and Vehicle Model parameter settings.

For this example, under PassengerCar > Powertrain, set:

1 Drivetrain to One Actuator Input.
2 Differential to Open Differential.
3 Electrical System to Electrical System 1EM BEV Ideal Voltage Source.

• Use the Electrical Machine parameters to specify a mapped motor and drive electronics
operating in torque-control model, including:

• PlntEM1Spd — Vector of rotational speeds
• PlntEM1EffTbl — Corresponding efficiency

• Use the Energy Storage parameters to specify a datasheet battery model for lithium-ion
battery, including:

• PlntBattOpenCirctVolt — Open circuit voltage table data
• PlntBattVoltSocBpt — Open circuit voltage breakpoints

4 Vehicle Control Unit to EV 1EM.
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Driver
Use the Driver parameter to select the driver. The available options depend on your Vehicle
Architecture and Vehicle Model parameter settings.

For this example, set PassengerCar > Driver to Longitudinal Driver to implement a driver
suitable for drive-cycle tracking.

• On the Vehicle Data tab, enter the tire data for your driver, including:

• DriverAeroRes — Aerodynamic drag coefficient
• DriverDrivelineRes — Rolling and driveline resistance coefficient

For this example, use the default parameter values.

Environment
Use the Environment parameter to select the driver. For this example, set PassengerCar >
Environment to Standard Ambient.

• On the Vehicle Data tab, enter the tire data for your driver, including:

• EnvAirTemp — Ambient air temperature
• EnvWindVelX — Ambient wind velocity in X direction

For this example, use the default parameter values.

After completing this step, see “Configure Virtual Vehicle Scenario and Test” on page 8-7.

See Also
Virtual Vehicle Composer

Related Examples
• “Get Started with the Virtual Vehicle Composer” on page 8-2
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Configure Virtual Vehicle Scenario and Test
Before completing this step, see “Configure Virtual Vehicle Data” on page 8-4.

Next, use the Vehicle Scenario and Test options to configure virtual vehicle test scenario. The
available options depend on your Vehicle Architecture and Vehicle Model parameter settings.

If you set Scenario to Drive Cycle, you can use:

• Drive cycles from predefined sources. By default, the block includes the FTP–75 drive cycle. To
install additional drive cycles from a support package, see “Install Drive Cycle Data” on page 5-2.
The support package has drive cycles that include the gear shift schedules, for example JC08 and
CUEDC.

• Workspace variables that define your own drive cycles.
• .mat, .xls, .xlsx, or .txt files.
• Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration

start time, and final reference speed.

For this example, run the virtual vehicle through the FPT75 drive cycle. On the Vehicle Scenario
and Test tab, set:

1 Scenario to Drive Cycle.
2 Drive Cycle to FTP75.
3 Click Add to Test Plans.

After completing this step, see “Configure Virtual Vehicle Data Logging” on page 8-8.

See Also
Virtual Vehicle Composer

Related Examples
• “Get Started with the Virtual Vehicle Composer” on page 8-2
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Configure Virtual Vehicle Data Logging
Before completing this step, see “Configure Virtual Vehicle Scenario and Test” on page 8-7.

Next, use the Virtual Vehicle Composer app to configure the virtual vehicle data that you want to
log, including vehicle position, velocity, and acceleration. The signals available for logging depend on
your Vehicle Architecture, Vehicle Model, and Vehicle Scenario and Test parameter settings.

By default, on the Data Logging Editor tab, the app has signals in the Selected Signals list. Use
the app to select or remove the signals that you want to log. For this example, log the default signals
in the list.

After completing this step, see “Build Virtual Vehicle” on page 8-10.

See Also
Virtual Vehicle Composer

Related Examples
• “Get Started with the Virtual Vehicle Composer” on page 8-2
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More About
• “Simulation Data Inspector”
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Build Virtual Vehicle
Before completing this step, see “Configure Virtual Vehicle Data Logging” on page 8-8.

Next, use the Virtual Vehicle Composer app to build your virtual vehicle. When you build, the app
creates a Simulink model that contains the vehicle architecture and data that you specified in the
previous steps.

For this example, build the virtual vehicle with an electric vehicle (EV) architecture. In the app Build

section, click Virtual Vehicle .

The build takes time to complete. View progress in the MATLAB Command Window.

The app names the model ConfiguredVirtualVehicleModel.

After completing this step, see “Operate Virtual Vehicle” on page 8-11.

See Also
Virtual Vehicle Composer

Related Examples
• “Get Started with the Virtual Vehicle Composer” on page 8-2
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Operate Virtual Vehicle
Before completing this step, see “Build Virtual Vehicle” on page 8-10.

Next, use the Virtual Vehicle Composer app to operate your virtual vehicle. When you operate the
vehicle, the app simulates the model using the test scenario that you specified on the Vehicle
Scenario and Test tab.

For this example, operate the electric vehicle (EV) using the FPT75 drive cycle. In the app Operate

section, click Run Test Plan .

The simulations take time to complete. View progress in the MATLAB Command Window.

After completing this step, see “Analyze Virtual Vehicle” on page 8-12.

See Also
Virtual Vehicle Composer

Related Examples
• “Get Started with the Virtual Vehicle Composer” on page 8-2
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Analyze Virtual Vehicle
Before completing this step, see “Operate Virtual Vehicle” on page 8-11.

Next, use the Virtual Vehicle Composer app to analyze your virtual vehicle. When you analyze the
vehicle, the app uses the Simulation Data Inspector to view the signals that you logged on the Data
Logging Editor tab.

For this example, analyze the electric vehicle (EV) response to the FPT75 drive cycle. In the app

Analyze section, click Simulation Data Inspector .
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Related Examples
• “Get Started with the Virtual Vehicle Composer” on page 8-2
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More About
• “Simulation Data Inspector”
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